
# Comparison of LHC observables with different codes

P. Bechtle, M. Hamer, C. Hensel, P. Wienemann

SUSY/BSM Fit Kick-Off Workshop, 2.-28.07.2010 Hamburg



#### Last Time . . .





# \* Comparison for various values of tan $\beta$ in the m0-m12 plane

 Slightly more detailed example study on the possible impact on fit results for "problematic" points

SUSY/BSM Fit Kick-Off Workshop, 22.-23.11..2010 Hamburg

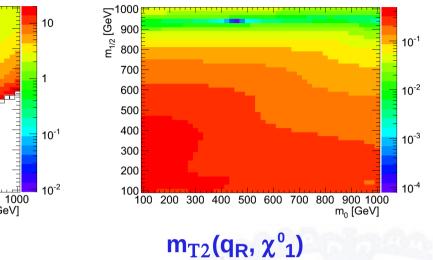


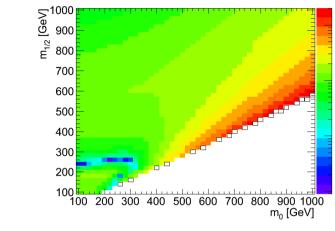
- **\* Used Codes:** 
  - ★ SoftSUSY 3.1.5
  - ★ IsaSugra 7.80
  - ★ SuSpect v2.41
    - For decays: S-Decay 1.3 & H-Decay 3.4
  - ★ Spheno v3beta51
- **\*** mSUGRA parameterspace, in the following

```
★ A0 = 100 GeV || A0 = -400 GeV
```

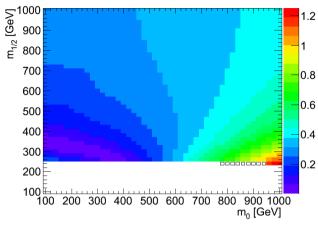
- $\star \tan\beta = 10 \parallel \tan\beta = 40$
- \* 100 GeV <= m0 <= 1000 GeV
- \* 100 GeV <= m12 <= 1000 GeV

```
🖈 sign μ = +1
```

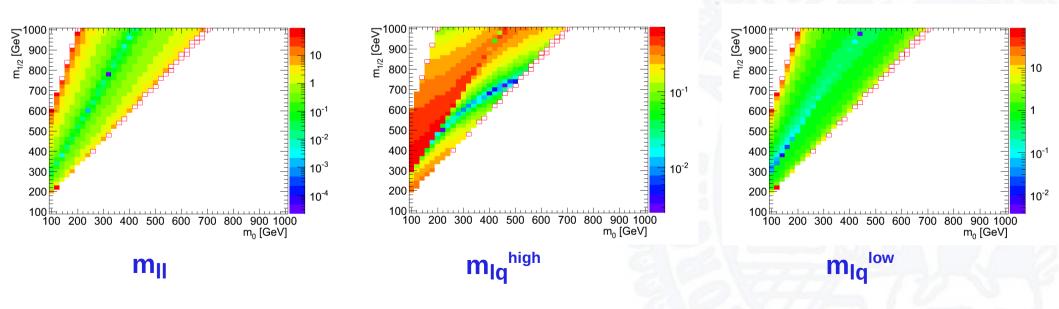

22/11/10


**\*** Here: short summary of some plots only, will focus on SoftSUSY vs SPheno

- \* Plots show unsigned relative difference, wrt SPheno v3beta51
  - \* Pink points: respective decay chain / parameter point not allowed by SPheno, but allowed by other calculator
  - ★ Black points: vice versa


### **Relative differences**





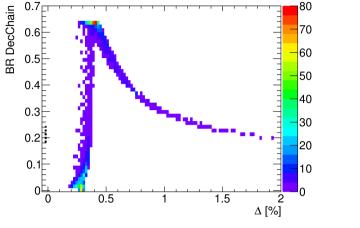



 $m_{tb}(b_1, \chi_1^+)$ 



 $m_{\chi+1}$ 

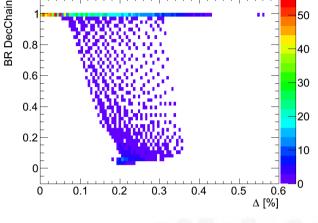



22/11/10

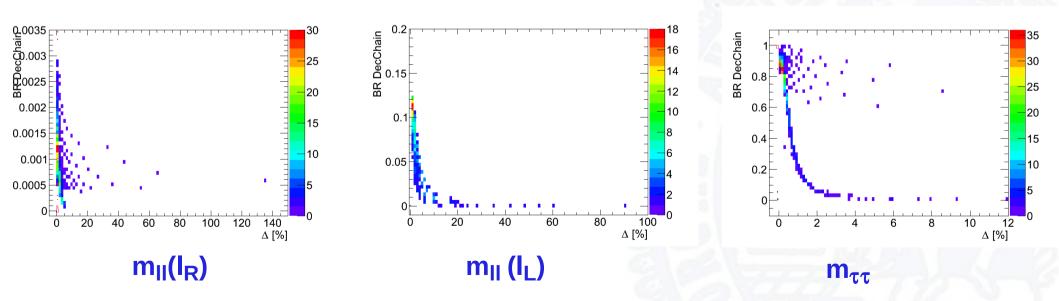
SUSY/BSM Fit Kick-Off Workshop, 22.-23.11..2010 Hamburg




#### GEORG-AUGUST-UNIVERSITÄT Göttingen


# **Difference vs Branching Fraction**




 $m_{\chi+1}$ 







 $m_{T2}(q_R, \chi^0_1)$ 



SUSY/BSM Fit Kick-Off Workshop, 22.-23.11..2010 Hamburg



22/11/10

# What do large differneces arise from?

| <i>m</i> 0 | $m_{1/2}$ | $m^{SP}_{	ilde{\chi}^0_2}$ | $m_{\tilde{I}_R}^{SP}$ | $m^{SP}_{	ilde{\chi}^0_1}$ | $m^{SO}_{	ilde{\chi}^0_2}$ | $m_{\tilde{I}_R}^{SO}$ | $m^{SO}_{	ilde{\chi}^0_1}$ |      | $\Delta$ [%] |      | $m_{ll}^{max,SP}$ | $m_{ll}^{max,SO}$ | $\Delta$ [%] |
|------------|-----------|----------------------------|------------------------|----------------------------|----------------------------|------------------------|----------------------------|------|--------------|------|-------------------|-------------------|--------------|
| 120        | 660       | 521.3                      | 278.4                  | 276.7                      | 520.0                      | 278.4                  | 275.7                      | 0.25 | 0.00         | 0.36 | 48.63             | 61.02             | 25.47        |
| 140        | 740       | 587.7                      | 313.0                  | 312.1                      | 586.3                      | 313.4                  | 310.9                      | 0.24 | 0.13         | 0.37 | 37.69             | 62.46             | 65.71        |
| 160        | 820       | 654.2                      | 348.0                  | 347.6                      | 652.5                      | 348.4                  | 346.3                      | 0.26 | 0.11         | 0.37 | 26.55             | 60.48             | 127.78       |
| 180        | 880       | 704.0                      | 376.5                  | 374.3                      | 702.2                      | 377.0                  | 372.9                      | 0.25 | 0.13         | 0.37 | 64.21             | 87.13             | 35.69        |
| 200        | 960       | 770.5                      | 411.5                  | 410.0                      | 768.4                      | 412.1                  | 408.4                      | 0.27 | 0.15         | 0.39 | 55.57             | 86.71             | 56.04        |

**\*** Points with huge relative and absolute differences

Could we measure them given there is SUSY and given the corresponding mSUGRA point is the correct model for SUSY breaking?

#### **\*** Performed very basic study:

- Run ATLAS Monte Carlo Generation for points in question (Herwig+Jimmy, SUSY input from IsaSugra)
- \* Count number of produced second lightest neutralinos at generator level
- **\*** Multiply number by product of branching fractions for the decay chain
- \* This does not take into account reconstruction/trigger efficiencies, selection efficiencies, acceptance, background, . . .
- **\*** Provided number probably too large consider them a very rough estimate

2

## Impact on "realistic" Fits?

\* As an example: Study points which show a large difference in the di-lepton endpoint m<sub>II</sub> (  $\chi^{0}_{2}$ ,  $\mu_{R}$ ,  $\chi^{0}_{1}$ ) tan  $\beta$  = 10, A0 = 100

#### \* Look at points which show a larger difference than 10%

| M0 [GeV]                | M12 [GeV]      | Total Crosssection [pb]         | Expected number of decay chains in 10fb-1 @ 14 TeV |                                                                    |  |  |  |
|-------------------------|----------------|---------------------------------|----------------------------------------------------|--------------------------------------------------------------------|--|--|--|
| 100                     | 580 0.60       |                                 | ~10                                                |                                                                    |  |  |  |
| 100                     | 600            | 0.49                            | ~10                                                |                                                                    |  |  |  |
| 120                     | 220            | 86.94                           | ~500                                               |                                                                    |  |  |  |
| 120                     | 640            | 0.33                            | ~4                                                 | This endpoint in Di-Lepton spectrum probably not measurable at any |  |  |  |
| 120                     | 660            | 0.28                            | ~3                                                 | of these points, except 120,220                                    |  |  |  |
| 120                     | 680            | 0.23                            | ~2                                                 |                                                                    |  |  |  |
| 140                     | 720            | 0.17                            | ~1                                                 | Reference: At SPS1a, we would                                      |  |  |  |
| 140                     | 740            | 0.14                            | ~1                                                 | expect ~24.000                                                     |  |  |  |
| 160                     | 800            | 0.09                            | <1                                                 |                                                                    |  |  |  |
| 160                     | 820            | 0.07                            | <1                                                 |                                                                    |  |  |  |
| 180                     | 860            | 0.05                            | <1                                                 |                                                                    |  |  |  |
| 180                     | 880            | 0.05                            | <1                                                 |                                                                    |  |  |  |
| 180                     | 900            | 0.04                            | <1                                                 |                                                                    |  |  |  |
| 200                     | 940 0.03       |                                 | <1                                                 |                                                                    |  |  |  |
| 200                     | 960            | 0.03                            | <1                                                 |                                                                    |  |  |  |
| 200<br>2 <b>2/11/10</b> | 980<br>SUSY/BS | 0.02<br>M Fit Kick-Off Workshop | < <u>1</u><br>2223.11.                             | 2010 Hamburg 8                                                     |  |  |  |



#### Case study: $\tan \beta = 10$ , A0 = 100, m0 = 120 GeV, m12 = 220 GeV

| Quantity                 | SPheno | SoftSUSY | Relative Difference |
|--------------------------|--------|----------|---------------------|
| $m_{	ilde{\chi}_2^0}$    | 152.4  | 152.1    | 0.20%               |
| $m_{\tilde{l}_P}$        | 152.0  | 152.0    | 0.00%               |
| $m_{\tilde{\gamma}_1^0}$ | 83.9   | 83.7     | 0.24%               |
| $m_{ll}^{max}$           | 9.20   | 4.60     | 50%                 |

- **\*** Large discrepancy in observable
  - **\*** Observable probably not measurable with 10fb-1@14 TeV
  - ★ If it is:
    - Expected experimental uncertainty might in the same order of magnitude as difference in prediction
    - \* Impact on Fit is expected to be marginal (?)



- Differences in theory predictions near kinematic borders may become very large
- In most cases large differences correspond to small branching fractions
- \* Respective observables will most likely not be measured at these points with 10fb-1 at 14 TeV
- \*However, results shown here are preliminary
- More Crosschecks and detailed studies to be done (?)
  Branching fractions not yet checked here

\* Doesn't answer the question how to deal with differences and mixups of predictions during a fit . . .