Towards parameter point dependent theory uncertainties

Sven Heinemeyer, IFCA (CSIC, Santander)

DESY Hamburg, 11/2010

... not a talk

... to initiate discussion!

 \rightarrow global χ^2 likelihood function

combines all theoretical predictions with experimental constraints:

$$\chi^{2} = \sum_{i}^{N} \frac{(C_{i} - P_{i})^{2}}{\sigma(C_{i})^{2} + \sigma(P_{i})^{2}} + \sum_{i}^{M} \frac{(f_{\mathsf{SM}_{i}}^{\mathsf{obs}} - f_{\mathsf{SM}_{i}}^{\mathsf{fit}})^{2}}{\sigma(f_{\mathsf{SM}_{i}})^{2}}$$

- N: number of observables studied
- *M*: SM parameters: $\Delta \alpha_{had}, m_t, M_Z, \alpha_s, \ldots$
- C_i : experimentally measured value (constraint)
- P_i : MSSM parameter-dependent prediction for the corresponding constraint

errors: $\sigma(C_i)$, $\sigma(P_i)$, $\sigma(f_{SM_i})$

 \Rightarrow as small as possible to yield reliable predictions!

- 1. Experimental error:
 - $\sigma(f_{SM_i})$: exp. error on SM input parameters $\sigma(C_i)$: exp. error on calculated quantity parameter dependent?
 - \rightarrow see below
- 2. Theory error: $\sigma(P_i)$
 - \Rightarrow relevant if not much smaller than experimental error!
 - (a) Intrinsic error
 - ⇒ error/uncertainty due to missing higher-order corrections only estimates possible parameter dependent!
 - (b) Parametric error
 - ⇒ error/uncertainty due to error of (SM) input parameters can be calculated
 - parameter dependent!
 - \Rightarrow automatically included if parameters are fitted . . .

Intrinsic error:

Error/uncertainty due to missing higher-order corrections

Existing calcultion: up to $\mathcal{O}(\alpha^n \alpha_s^m)$

Missing: $\mathcal{O}\left(\alpha^N \alpha_s^M\right)$ with $N \geq n$, $M \geq m$

QCD:

- ⇒ scale variation: $\mu/2...2\mu$ sufficient? larger intervals?
- \Rightarrow in principle easy to calculate

\Rightarrow but most of our observables are based on EW calculations

Intrinsic error of EW observables:

Examples:

. . .

- the lightest Higgs boson mass M_h
- the W boson mass M_W
- the effective weak leptonic mixing angle $\sin^2 \theta_{eff}$
- the anomalous magnetic moment of the muon $(g-2)_{\mu}$
- -B physics observables . . .

 \Rightarrow every calculation/code should contain an evaluation of the intrinsic uncertainties

 \Rightarrow but hardly one does . . .

Example: M_h (based on FeynHiggs)

Calculation includes:

- full one-loop
- leading two-loop: $\mathcal{O}(\alpha_t \alpha_s)$, $\mathcal{O}(\alpha_b \alpha_s)$, $\mathcal{O}(\alpha_t^2, \alpha_b^2, \alpha_t \alpha_b)$

- some very leading three-loop: $\mathcal{O}\left(\alpha_s^2 \alpha_t\right)$

Estimate of missing higher-order corrections:

- missing two-loop: scale variation of $\overline{\text{DR}}$ one-loop result
- missing three-loop corrections from t/\tilde{t} sector: variation of m_t at the two-loop level
- missing three-loop corrections from b/\tilde{b} sector: variation of Δ_b inclusion (resummed vs. iteratively resummed)

⇒ FeynHiggs output contains intrinsic error for Higgs masses and mixings

 \Rightarrow strong variation from "usual 3 GeV" possible!

Example: M_W

[J. Haestier, S.H., D. Stöckinger, G. Weiglein '05]

[S.H., W. Hollik, D. Stöckinger, A.M. Weber, G. Weiglein '06]

Estimate missing SUSY corrections order by order:

- $\mathcal{O}\left(\alpha_t^2, \alpha_t \alpha_b, \alpha_b^2\right)$: beyond existing leading contributions
- $\mathcal{O}(\alpha \alpha_s)$: beyond $\Delta \rho$ approx.
- $\mathcal{O}\left(\alpha\alpha_s^2\right)$
- $\mathcal{O}\left(\alpha^2 \alpha_s\right)$
- $\mathcal{O}\left(\alpha^{3}\right)$
- missing phase dependence at two-loop
- \Rightarrow evaluate for $M_{SUSY} = 300, 500, 1000 \text{ GeV}$

Combine with SM uncertainty: $\delta M_W^{SM,intr.} = 4 \text{ MeV}$

 $\delta M_W^{\text{SUSY,intr.}} = 5 - 11 \text{ MeV} \quad (\text{depending on } M_{\text{SUSY}})$

 \Rightarrow not relevant now, but with future improved exp. precision!

Parameter dependent experimental error?

 M_h measurement in the "nice" m_h^{\max} scenario: [CMS '06]

Measurement possible only for $M_A\gtrsim 250~{\rm GeV}$ $\Rightarrow \delta M_h\approx 200~{\rm MeV}$

other channels: $h \rightarrow ZZ^* \rightarrow 4\mu ~(M_h \gtrsim 130 {\rm ~GeV})$

otherwise: $\delta M_h \gtrsim 1-2~{\rm GeV}$