X-Ray Nano-Analytics and Nicroscopy

Christian G. Schroer DESY & Universität Hamburg

DESY: Bright Light for Science

fs dynamics of complex

matter (spectroscopy)

X-ray Scanning Microscopy

Broad field of applications:

>Main advantage: large penetration depth

in-situ and operando studies

- 3D bulk analysis without destructive sample preparation
- >X-ray analytical contrasts: XRD, XAS, XRF, ...
 - elemental, chemical, and structural information

Today: "mesoscopic gap"

real-space resolution: down to about 10 nm

XRD and XAS: atomic scale

Many interesting physics and chemistry (e.g. catalysis) at the 1 - 10 nm scale!

catalysts Cu(I)₂O

C. G. Schroer, et al., APL **82**, 3360 (2003).

L **62**, 3300 (20

3

X-ray Microscopy

Many interesting physics and chemistry questions:

investigate local states:

- individual defects (0D): changes in electron density, charge ordering
- (structural) domain boundaries (2D),
 e. g., in multiferroics
- > mesoscopic dynamics at (solid-state) phase transitions
- > catalytic nanoparticles (under reaction conditions)

ferroelectric phase transition

Griffin, et al., PRX 2, 041022 (2012).

variation of supercond. gap

Mesoscale also very important for nanotechnology (e. g., defects in devices)!

> ...

nanoelectromechanical switch

Lee, et al., Nature Nanotech. 8, 36 (2012).

Lang, et al., Nature **415**, 412 (2002).

Current State of X-Ray Microscopy

Conventional X-ray microscopy

optics limit spatial resolution: diffraction limit

(typically: a few tens of nanometers)

optics are technology limited! Theoretical extrapolation of X-ray optical performance to the atomic level.

[PRB 74, 033405 (2006); H. Yan, et al., PRB 76, 115438 (2007)]

Coherent X-ray imaging techniques (CXDI, ptychography)

- no imaging optics needed!
- limited by statistics of far-field diffraction patterns ...

highest resolution: a few nanometers, focusing coherent beam [PRL 101, 090801 (2008); Y. Takahashi, et al., PRB 80, 054103 (2009); A. Schropp, et al., APL 100, 253112 (2012)]

Spectral Brightness

10000x more light per decade (since 1965)

Spectral brightness:

$$B_{\rm sp} = \frac{F}{\Omega \cdot A \cdot \Delta E/E}$$

Flux per phase-space volume

- > faster measurements (time resolution)
- > nano-imaging (spatial resolution)
- > spectroscopy (energy resolution)

Spectral Brightness

10000x more light per decade (since 1965)

Nanofocusing Optics

reflection:

- > mirrors (25 nm)
 - H. Mimura, et al., APL 90, 051903 (2007)
- > capillaries
- > wave guides (~10 nm) S. P. Krüger, et al., J. Synchrotron Rad. 19, 227 (2012)

diffraction:

- >Fresnel zone plates (< 10 nm)</p>
 - J. Vila-Comamala, et al., Ultramic. **109**, 1360 (2009)
- > multilayer mirrors (7 nm) H. Mimura, et al., Nat. Phys. 6, 122 (2010)
- > multilayer Laue lenses (8 x 7 nm) S. Bajt, et al., Light: Sci. & App. 7, 17162 (2018)
- > bent crystals
- refraction:
- >lenses (43 nm, 18 nm)
 - C. G. Schroer, et al., AIP Conf. Ser. 1365, 227 (2011)
 - J. Patommel, et al., APL **110**, 101103 (2017)

7

pair of mirrors

in KB-geometry

(a)

Section

focus

Focusing optic

.....

-ray source

(b)

X-Ray Microscopy Techniques: Full-Field Imaging

Projection imaging:

Example: Projection Imaging (Phase Contrast)

Tomographic Reconstruction

Single slice:

reconstructed from 1250 projections

root of mahogany tree (W. H. Schröder, FZ Jülich)

3D Reconstruction

Many slices:

3D structure

root of mahogany tree (W. H. Schröder, FZ Jülich)

resolution: $\sim 3 \ \mu m$

Visualize Catalysts in Action

Methane often wasted during oil production:

First step to convert methane into liquid fuels (syngas production):

VOLUME 110 JUNE 15, 2006 NUMBER 23 http://pubs.acs.org/JPCB

THE JOURNAL OF PHYSICAL CHEMISTRY

CONDENSED MATTER, MATERIALS, SURFACES, INTERFACES, & BIOPHYSICAL CHEMISTRY

PUBLISHED WEEKLY BY THE AMERICAN CHEMICAL SOCIETY

2D-Mapping of a

Catalyst inside a

Fixed-Bed Reactor by X-Ray Absorption Spectroscopy (see page XXXX)

Heterogeneous

Visualize Catalysts in Action

Methane often wasted during oil production:

First step to convert methane into liquid fuels (syngas production):

J. Chem. Phys. B **110,** 8674 (2006)

Com C (exot

Combustion of methane:

 $CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$

(exothermal: -801,7kJ/mol)

reforming of methane to H₂: $CH_4 + H_2O \xrightarrow{Rh} CO + 3H_2$

(endothermal: 206.1kJ/mol) $CH_4 + CO_2 \xrightarrow{Rh} 2CO + 2H_2$

(endothermal: 247,5kJ/mol)

potentially other reaction: direct partial oxidation:

$$2CH_4 + O_2 \xrightarrow{Rh} 2CO + 8H_2$$

(exothermal: -35,5kJ/mol)

X-Ray Absorption: Lambert-Beer Law

$$I_1(E) = I_0(E) \cdot \exp\left[-\mu(E)d\right]$$

 $\mu(E)$: linear attenuation coefficient

$$\mu(E) \cdot d = \ln\left(\frac{I_0}{I_1}\right)$$

Photo Absorption

Example: Absorption in Cu & Ag

μ(E): linear attenuation coefficient

> mainly atomic effect

> strong dependence on x-ray energy:

$$\times E^{-2.78}$$

> strong dependence on atomic number:

$$\propto Z^{2.7}$$

> larges contribution from inner shells

Example: Absorption in Cu

μ(E): linear attenuation coefficient

X-ray Absorption Spectrum

Three characteristic features:

Energy of Absorption Edge

Increasing oxidation state: absorption edge shifts to higher x-ray energies

Reduced screening of electric field of nucleus by valence electrons:

other electrons more tightly bound!

Shape of Near-Edge Spectrum

Shape of spectrum:

- > can be modeled by methods in theoretical solid state physics
- > can be used as "fingerprint" to identify a given chemical environment

Visualize Catalysts in Action

Methane often wasted during oil production:

First step to convert methane into liquid fuels (syngas production):

J. Chem. Phys. B **110,** 8674 (2006)

Combustion of methane:

 $CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$

(exothermal: -801,7kJ/mol)

reforming of methane to H₂: $CH_4 + H_2O \xrightarrow{Rh} CO + 3H_2$

(endothermal: 206.1kJ/mol) $CH_4 + CO_2 \xrightarrow{Rh} 2CO + 2H_2$

(endothermal: 247,5kJ/mol)

potentially other reaction: direct partial oxidation:

$$2CH_4 + O_2 \xrightarrow{Rh} 2CO + 8H_2$$

(exothermal: -35,5kJ/mol)

Visualize Catalysis

In-situ transmission imaging of catalyst bed inside chemical reactor

Grunwaldt, et al., J. Chem. Phys. B **110,** 8674 (2006)

Visualize Catalysis

Grunwaldt, et al., J. Chem. Phys. B **110,** 8674 (2006)

Visualize Catalysis

$2 \ \mathrm{CH}_4 + \mathrm{O}_2 \rightarrow 2 \ \mathrm{CO} + 4 \ \mathrm{H}_2$

direction of flow

Grunwaldt, et al., J. Chem. Phys. B **110,** 8674 (2006) production of hydrogen Rh is reduced!

Scanning Microscopy and Tomography: Nanoprobe

>Fluorescence microtomography

>Fluorescence microtomography

>Tomographic absorption spectroscopy (XANES tomography)

>Fluorescence microtomography

- >Tomographic absorption spectroscopy (XANES tomography)
- >Small-angle x-ray scattering tomography (SAXS tomography)

>Fluorescence microtomography

Scanning Microscopy with Hard X-Rays

Source is imaged onto the sample to create an intensive micro-/nanobeam:

Spectral Brightness

10000x more light per decade (since 1965)

Spectral brightness:

$$B_{\rm sp} = \frac{F}{\Omega \cdot A \cdot \Delta E/E}$$

Flux per phase-space volume

- > faster measurements (time resolution)
- > nano-imaging (spatial resolution)
- > spectroscopy (energy resolution)

Fluorescence Tomography

Example: investigating the ion transport in plants

Fluorescence analysis of plants:

strong diffusion of elementscell structure complicated and delicate

Difficult sample preparation

- >cryo sections
- >fracture surfaces

ideal:

nondestructive probe of inner structures of sample

400 µm

Fluorescence Tomography

Root of Mahogany tree

element distribution on virtual section through sample

Example:

Fluorescence Yield

Fluorescence Spectrum

Excitation with Monochromatic Synchrotron Radiation

Example: undulator radiation (Si 111 monochrom.): 19.5 keV

Scanning Probe: Fluorescence Microtomography

Fluorescence Microtomography

Fluorescence Tomography: Measured Data Sinograms:

translations: 128, 6µm

experimental parameters:

- >refractive lens (AI): *N* = 150, f = 45.4 cm, m = 1/127
- >beam size: 1.5 x 6µm², flux: 1.1 · 10¹⁰ ph/s

Fluorescence Tomography: Measured Data Sinograms:

translations: 128, 6µm

Symmetry:

$$I_{i\nu}(-r,\varphi+\pi) = I_{i\nu}(r,\varphi)$$

only holds (approx.) for Rb! Absorption of fluorescence radiation: asymmetry in sinogram.

Fluorescence Tomography: Model

Absorption Correction

Example: potassium distribution in Mahogany root

Disregarding attenuation of fluorescence:

C. Schroer, Appl. Phys. Lett. 79, 1912 (2001).

Absorption Correction

Example: potassium distribution in Mahogany root

Accounting for attenuation of fluorescence:

C. Schroer, Appl. Phys. Lett. 79, 1912 (2001).

Fluorescence Tomography

root of Mahogany tree

pixel size: 6 µm

Fluorescence Tomography

Take advantage of:

- >large penetration depth of x-rays
- >element specific contrast

Compare with structural data from transmission tomogram:

K K α

SAXS Tomography: Local Nanostructure

SAXS: Small-Angle X-ray Scattering

Investigating the local nanostructure on a virtual section through sample

Non-destructive investigation of inner structure of sample

virtual section

Sample:

polyethylene rod

reconstructed SAXS cross section at each point on the virtual section

C. Schroer, et al., Appl. Phys. Lett. 88, 164102 (2006) DESY. | DESY Summer Student Programme | Christian G. Schroer, August 09, 2022

Tomographic Small-Angle X-Ray Scattering

Transmitted beam:

$$I_1(r,\varphi) = I_0 \exp\left\{-\int ds' \mu \left[x(s',r), y(s',r)\right]\right\}$$

Standard tomography:

homogeneous density (polyethylene):

 $\rho = [0.88 \pm 0.04] \text{g/cm}^3$

C. Schroer, et al., Appl. Phys. Lett. 88, 164102 (2006)

attenuation

scattered signal:

$$I_{\vec{q}}(r,\varphi) = I_0 \int ds \ f(\varphi,s,r) p_{\vec{q},\varphi}(x,y) g(\varphi,s,r)$$

attenuation of primary beam:

attenuation of scattered beam

$$f(\varphi, s, r) = \exp\left\{-\int_{-\infty}^{s} ds' \ \mu(x, y)\right\} \qquad g(\varphi, s, r) = \exp\left\{-\int_{s}^{\infty} ds' \ \mu(x, y)\right\}$$

Diffraction signal in forward direction:

$$I_1(r, \varphi) = I_0(r, \varphi) \cdot f(\varphi, s, r) \cdot g(\varphi, s, r)$$
 independent of s

C. Schroer, et al., Appl. Phys. Lett. 88, 164102 (2006)

scattered signal:

$$I_{\vec{q}}(r,\varphi) = I_1 \int ds \ p_{\vec{q},\varphi}(x,y)$$

tomography works only if $p_{\vec{q},\varphi}(x,y)$ is independent φ

general case: $p_{\vec{q},\varphi}(x,y)$ complicated function reconstruction only for $q_r = 0$ (q along rotation axis)

C. Schroer, et al., Appl. Phys. Lett. 88, 164102 (2006)

scattered signal:

$$I_{\vec{q}}(r,\varphi) = I_1 \int ds \ p_{\vec{q},\varphi}(x,y)$$

tomography works only if $p_{\vec{q},\varphi}(x,y)$ is independent φ

special case: $p_{\vec{q},\varphi}(x,y)$ has rotation symmetry around rotation axis reconstruction of full SAXS cross section in the vicinity of q = 0

C. Schroer, et al., Appl. Phys. Lett. 88, 164102 (2006)

reconstruction:

scattered intensity

translation

integral scattering cross section along rotation axis

----- microbeam

S

x

rotation

Sample with fibre texture:

scattered intensity

inhomogeneous nanostructure

scattering cross section in each pixel (rotation symmetry)!

C. Schroer, et al., Appl. Phys. Lett. 88, 164102 (2006)

SAXS Tomography in 3D

Liebi, M., et al., Nature, **527**(7578), 349–352. (2015). general SAXS-tomographic oroblem

in general: measure 6 dimensional information! Scan in 4 dimensions and record 2D patterns (coarse mesh due to time limitations)

Conventional X-Ray Microscopy

X-ray microscopy as a quantitative local measurement:

> Full-field microscopy: attenuation and phase contrast

measure complex refractive index of sample

> scanning microscopy:

all x-ray analytical techniques can be used as contrast:

 x-ray fluorescence (XRF): chemical composition (quantitative analysis)
 x-ray absorption spectroscopy (XAS): chemical state of given element (e. g. oxidation)

> x-ray diffraction and scattering (SAXS & WAXS): local nanostructure

Full-field and scanning microscopy require x-ray optics

resolution limited by numerical aperture of optics

Tomorrow: what are the limits and how can we overcome them?