

Molecular Science: Part 2 Molecular structure and dynamics

Amit Samanta (amit.samanta@cfel.de)

Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg Department of Physics, Universität Hamburg Department of Chemistry, Universität Hamburg The Hamburg Center for Ultrafast Imaging, Universität Hamburg

THE HAMBURG CENTER FOR ULTRAFAST IMAGING Ш

<u>fi f</u> Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

Controlled Molecule Imaging

Established by the European Commission

The Visible Spectrum

Structure & Function

Barty, Küpper, Chapman, Ann. Rev. Phys. Chem. 64, 415–435 (2013) Chang, Horke, Trippel, Küpper, Int. Rev. Phys. Chem. 34, 557–590 (2015); arXiv:1505.05632 [physics]

Watching chemistry with atomic spatial (100 pm) and temporal (10 fs) resolution

• Imaging chemical reactions of single molecules

with atomic resolution in real time

Controlled Molecule Imaging Toward a microscopic understanding of molecules at work

Atomic-resolution imaging of ultrafast chemical dynamics

The 'Quantum Molecular Movie'

Spatially separated indole-water dimer

What could be happening? Ion-imaging of ultrafast dynamics in pure indole-water-dimer sample

Water acts as molecular sunscreen! Pump-probe delay (ps) 1251002575a a. 444. 444. 444. 44 Indole(H₂O)⁺ x5 \mathbf{m}^* Signal (ions/shot) 0.2→ Indole⁺ ----H_aO+ x10 0.1 A Party and a second 0.0b Signal (ions/shot) 0.20.1Indole(H_aO)⁺ x5 → Indole⁺ S₀ 0.06 $\mathbf{2}$ Pump-probe delay (ps)

cf. Sobolewski, Domcke, Computational studies of the photophysics of hydrogen-bonded molecular systems, J. Phys. Chem. A 111, 11725 (2007)

water (S_0) & indole (S_0)

Laser-induced electron diffraction of indole & indole-water

The 'Quantum Molecular Movie'

Structure and dynamics of large biomolecules and nanoparticles

Top-down and bottom-up approaches toward molecular-physics studies of proteins.

ard

Robinson *PNAS* **2019**

Tools

X-Ray Crystallography

sample must be crystallized in a lattice structure

any size molecule

atomic resolution but crystallization may take years and damage protein structure

Structure

Nuclear **Magnetic Resonance**

sample must be dissolved in water

small molecules

closer to real protein structure but larger proteins can not be resolved

Gruner PNAS 2014

X-ray crystallography

This is the condition for the constructive interference of waves which have an angle of incidence θ to a set of lattice planes a distance d apart.

Defining property of a crystalline material is that it is periodic in space scattering of X-rays from a crystal lattice, **Bragg's law**

 $m\lambda = 2d\sin\theta$

Path difference between two rays reflected from adjoining planes

Crystallography: structures of molecules

Crowfoot, Bunn, Rogers-Low, Turner-Jones in Clarke, Johnson, Robinson, (eds.) "Chemistry of Penicillin" Princeton University Press, pp. 310-67 (1949)

Todays X-ray crystallography

Todays X-ray crystallography

Laue diffraction from photoactive yellow protein, 10 exposures, ~3700 reflections

Todays X-ray crystallography

Experimental Method	Proteins	Nucleic Acids	Protein/Nucleic Acid complexes	Other	Т
X-ray diffraction	106595	1820	5471	4	11
NMR	10296	1190	241	8	1
Electron microscopy	1021	30	367	0	
Hybrid	99	3	2	1	
Other	181	4	6	13	
Total:	118192	3047	6087	26	12

But there are a few things crystallography cannot do / struggles with:

- comparatively large crystals!
- exposures with hard x-rays that can damage the structure
- Radiation damage the same crystal is bombarded for many • ultrafast dynamics (except some special cases)

Electron Microscopy — NMR — Total — X–Ray

• Not every molecule (esp. proteins) crystallises, especially into such

X-ray sources and the FEL revolution

The European XFEL

X-ray sources and the FEL revolution

Serial femtosecond crystallography (SFX)

- The much higher x-ray intensities allow the use of much smaller crystals (100s of nm)
- Sample destruction issue is solved by providing a new (but identical) crystal every shot
 - Every crystal only exposed to one x-ray pulse

• If the x-ray pulse is short enough, the diffraction image is recorded before the sample gets destroyed by the high intensity pulse

Serial femtosecond crystallography (SFX)

- The much higher x-ray intensities allow the use of much smaller crystals (100s of nm)
- Sample destruction issue is solved by providing a new (but identical) crystal every shot
 - Every crystal only exposed to one x-ray pulse
 - If the x-ray pulse is short enough, the diffraction image is recorded before the sample gets destroyed by the high i

Serial femtosecond crystallography (SFX)

- The much higher x-ray intensities allow the use of much smaller crystals (100s of nm)
- Sample destruction issue is solved by providing a new (but identical) crystal every shot
 - Every crystal only exposed to one x-ray pulse
 - If the x-ray pulse is short enough, the diffraction image is recorded before the sample gets destroyed by the high i

Coherent diffractive imaging CDI (Single particle imaging SPI)

• SFX allows structure determination of many systems that previously could not be studied • But it still relies on (albeit very small) crystals...can we image isolated molecules/particles?

Coherent diffractive imaging CDI (Single particle imaging SPI)

- Image a single object (molecule, nanoparticle) at a time
- Recover the orientation from the recorded pattern afterwards
- Sample different orientations "randomly"

Pro:

no need for alignment

Con:

- orientation recovery not trivial (might require a-priori knowledge)
- orientation recovery requires a certain number of scattered photons in each diffraction pattern

- For 3D reconstruction we need images from many orientations of an identical object!
 - many identical objects in known orientations

- Image an ensemble of identical objects at a time
- Make sure all object are aligned in a known way
- Change alignment of objects to sample orientation space

Pro:

- Can have scattering from many objects
- No need for difficult orientation recovery

Con:

• Need to align all objects in a welldefined and controlled fashion

Single particle imaging (SPI)

For 3D reconstruction we need images from many orientations of an

many identical objects in known orientation

ALS: towards single proteins

Top down approach

Atomic-resolution coherent-x-ray-diffractive single-particle imaging

Sample conditions

- in vacuum
- identical
- intact, 'native'
- high density
- synchronized to XFEL pulses

Barty, Küpper, Chapman, Ann. Rev. Phys. Chem. 64, 415–435 (2013) Chang, Horke, Trippel, Küpper, Int. Rev. Phys. Chem. 34, 557–590 (2015); arXiv:1505.05632 [physics]

Electrospray

Table 1. Aerosolization parameters. Characteristic parameters for

Beyerlein et al., Rev. Sci. Instrum., 86, 125104 (2015) Bielecki et al., Science Advances, 5, 5 (2019)

Differential Mobility Analyser (DMA) and particle counter

ALS: towards single proteins

Worbs, Lübke, Estillore, Samanta, Küpper, in preparation

Aerosolization and particle beam formation

Aerosolisation

1 µm x-ray focus

Injection

Beyerlein, Adriano, Heymann, Kirian, Konska, Wilde, Chapman, Bajt, Rev. Sci. Instrum. 86, 125104 (2015) Roth, Awel, Horke, Küpper, J. Aerosol. Sci. 124, 17-29 (2018) arxiv:1712.01795 [physics.flu-dyn]

Particle beam formation: Importance

Beyerlein, Adriano, Heymann, Kirian, Konska, Wilde, Chapman, Bajt, Rev. Sci. Instrum. 86, 125104 (2015) Roth, Awel, Horke, Küpper, J. Aerosol. Sci. 124, 17-29 (2018) arxiv:1712.01795 [physics.flu-dyn]

Need: smaller particle beam

Aerodynamic-lens-injectors for generating particle beams

Roth, Awel, Horke, Küpper, J. Aerosol. Sci. 124, 17-29 (2018) arxiv:1712.01795 [physics.flu-dyn]

ALS with gold simulation and experimental comparison

Worbs, Lübke, Estillore, Samanta, Küpper, in preparation

Pump-probe experiments

Proposed experiment:

Recording structural dynamics of electronically excited gold nanoparticles (AuNPs)

- coherent plasmon excitation followed by electron-electron scattering and electron-phonon coupling
- energy is dissipated into different phonon modes and a symmetric breathing mode on ps timescale
- the breathing mode modulates the particle size by ~1%
- monitored by optical transient absorption spectroscopy (in solution)
- the breathing mode frequency is size dependent
- the plasmon damping rate depends on the local environment.

Direct imaging of this structural dynamics: Optical-pump (400 nm) x-ray-probe (4.5 nm)

Recording structural dynamics of electronically excited gold nanoparticles

simulated diffraction patterns for 40nm AuNP

Goal: Record molecular movie by changing the pump-probe delay

Difference image

Recording structural dynamics of electronically excited gold nanoparticles

Direct imaging of this structural dynamics: Optical-pump (400 nm) x-ray-probe (4.5 nm)

Time delay (ps)

At different pump laser intensity

ALS: towards single proteins

Top down approach

ALS: towards single proteins

Problem of focussing small particles, effect of Brownian motion

Cryogenic buffer gas cooling

Cryogenic buffer gas cooling

- - Laser-induced alignment
- Time resolved measurements, 5.
 - Better starting point!
 - Trapping reaction intermediates!

Singh, Samanta, Roth, Gusa, Ossenbrüggen, Rubinsky, Horke, Küpper, Phys. Rev. A 97, 032704 (2018)

Similarity to supersonic expansion molecular beams

Properties of supersonic expansions

 \rightarrow Convert random thermal energy into directed (forward) motion

> $\left| \frac{5RT_0}{2} \right|$ $v_{\rm max} = \sqrt{2}$ for ideal gas:

<u>Typical achieved temperatures:</u>

- translation ~ 0.1 K
- rotation ~ 1 K

• vibration < 50 K

tells you something about typical coupling strengths...

1,500

Buffer gas cooling

Similarity to supersonic expansion molecular beams

<u>Typical achieved temperatures:</u> (temperature of helium, 4 K)

- translation ~ 4 K
- rotation ~ 4 K

main factor cell length (number of effective collision)

vibration ~ 4 K

Cryogenically shock-frozen focused and selected bio-nano-particles **Experimental setup**

48 Samanta, Amin, Estillore, Roth, Worbs, Horke, Küpper, arXiv:1910.12606 [physics.bio-ph] Worbs, Lübke, Roth, Samanta, Horke, Küpper, Opt. Express 27, 36580-36586 (2019) arXiv:1909.08922 [physics.optics]

Light-sheet imaging for the recording of transverse absolute density distributions of gas-phase particle-beams from nanoparticle injectors

Worbs, Lübke, Roth, Samanta, Horke, Küpper, Opt. Express 27, 36580-36586 (2019) arXiv:1909.08922 [physics.optics]

Light-sheet imaging for the recording of transverse absolute density distributions of gas-phase particle-beams from nanoparticle injectors

Worbs, Lübke, Roth, Samanta, Horke, Küpper, Opt. Express 27, 36580-36586 (2019) arXiv:1909.08922 [physics.optics]

Light-sheet imaging for the recording of transverse absolute density distributions of gas-phase particle-beams from nanoparticle injectors

Worbs, Lübke, Roth, Samanta, Horke, Küpper, Opt. Express 27, 36580-36586 (2019) arXiv:1909.08922 [physics.optics]

Cryogenically shock-frozen, focused, and selected bio-nano-particles — polystyrene spheres —

Samanta, Amin, Estillore, Roth, Worbs, Horke, Küpper, arXiv:1910.12606 [physics.bio-ph]

Cryogenically shock-frozen focused and selected bio-nano-particles Granulovirus occlusion body

265 nm × 265 nm × 445 nm

Analysis yields hydrodynamic diameter of 320±20 nm

Cryogenically shock-frozen focused and selected bio-nano-particles Cooling rates

Newton's law of cooling: $T_t = T_{He} + (T_0 - T_{He})e^{-hA/C}$ with

	3		$200 \mathrm{K}$	133 K	$77~\mathrm{K}$	10 K	Cooling-Rate			
	2		μs	μs	μs	μs	(K/s)			
	Ζ	500 nm	613	1409	2467	12000	1.8×10^{5}			
	2	200 nm	224	476	821	3007	4.9×10^{5}			
T (K)		50 nm	55	110	185	539	2.2×10^{6}			
	1	10 nm	12	23	37	103	1.1×10^{7}			
	1	Lysozyme	6	10	16	40	2.6×10^{7}			
				Shock freezing occurs on						
		50 -		• ev	ery s	ry single particle a				
• No external param										
		 Iayer thickness, distrib 								
		cf. plunge freezing								

Optimizing the shape of the buffer-gas-cell

Conclusions & outlook

separation (small molecules): Chang, Horke, Trippel, Küpper, Int. Rev. Phys. Chem. 34, 557–590 (2015); arXiv:1505.05632 [physics]

