Astroparticle Physics

2022, August 25

Gernot Maier

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

- Introduction
- Instrumental Techniques
- Acceleration and Sources
- Fundamental Physics

High-energy / non-thermal astronomy

- Photons / particles with energies much higher than their rest mass
 - electron: ~5 x 10⁵ eV ~ 0.6 x 10¹⁰ K
 - protons: ~10⁹ eV ~ 10¹³ K
- hard-to-achieve temperatures non-thermal processes dominate above MeV energies

Observatories

Fermi (Gamma-rays)

Suzaku (X-rays)

<image>

Auger (Cosmic Rays)

DEDT. TASILOPALICIE ENVSICS | GEMOt Maier

CTA (Gamma-rays)

AMS (Cosmic Rays)

LIGO (Gravitational waves)

IceCube (Neutrinos)

Cosmic Rays

"Cosmic rays are high-energy protons and atomic nuclei which move through space at nearly the speed of light. They originate from the sun, from outside of the solar system, and from distant galaxies." (Wikipedia)

Cosmic Ray Energy Spectrum

98% nuclei, mostly p, He,but also heavier nuclei2% electrons(at a few GeV;strongly energy dependent)

cosmic rays energies up to 10²⁰ eV energy density similar to star light or magnetic fields

Cosmic Rays, Neutrinos, Gamma rays

e.g. Ackermann et al, ApJ 799 (2015)

Viktor Hess

1912: Several ascents up to 5000 m 1936: Nobel prize

Viktor Hess

с

Altitude (km)	Change in Ionization (10 ⁶ m ⁻³)
0	0
1	1,2
3	8,8
4	28,7
5	61,3

1912: Several ascents up to 5000 m 1936: Nobel prize

High energy astrophysics in one equation

 $N_i(E, x, t) dE$ is density of particles of type *i* at position x with energy between E and dE

Some of the main questions in Astroparticle Physics

1. Cosmic Particle Acceleration

- How and where are particles accelerated?
- How do they propagate?
- What is their impact on the environment?

2. Probing Extreme Environments

- Processes close to neutron stars and black holes
- Processes in relativistic jets, winds, accretion, explosions, pulsars
- Cosmic voids

3. Exploring Frontiers of Physics

- What is the nature of dark matter?
 Does it exist at all? How is it distributed?
- Is the speed of light constant?

dark matter (line-of-sight density)

Instruments

How to detect cosmic rays, gamma rays, neutrinos, ...

Extensive Air Shower: toy model for particle cascades

$$N(X) = 2^{X/\lambda}$$

$$E(X) = \frac{E_0}{N(X)}$$

$$N_{max} = N(X_{max}) = \frac{E_0}{E_C} \propto E_0$$

$$X_{max} = \lambda \frac{\log \left(E_0 / E_C \right)}{\log 2} \propto \log(E_0)$$

- Measure
 - particles reaching ground
 - Superluminal particles create Cherenkov light
 - High-energy electrons excite nitrogen which then fluorescence

Heitler Model

here: primary particle is a photon (similar: hadronic showers)

Extensive Air Shower

Extensive Air Shower

KASCADE Karlsruhe Shower Core and Array Detector

The Pierre Auger Observatory

Plastic tank with 12 tons of clean water

The Pierre Auger Observatory

12 tons of clean water

Area 3,000 km²

$$\sigma_{\text{tot}} = \frac{1}{2s} \frac{1}{i} \lim_{\epsilon \to 0} \left[A(s + i\epsilon, t = 0) - A(s - i\epsilon, t = 0) \right]$$

$$\sigma_{\text{tot}} = \frac{1}{s} \Im m(A(s, t \to 0))$$

interaction

Pierog 2017

5

Extensive Air Showers and Cherenkov Emission

xov on

charged

150 m

Cherenkov emission angle depend on atmospheric density

Extensive Air Showers and Cherenkov Emission

Imaging Technique - Air Showers

Imaging Atmospheric Cherenkov Telescopes

12 m diameter reflector (106 m² mirror area) Imaging Atmospheric Cherenkov Telescopes 499 pixel PMT Camera

Sophisticated trigger system needed to suppress night sky background (120 MHz -> 200 Hz)

> 12 m diameter reflector (106 m² mirror area)

The Cherenkov Telescope Array (CTA)

Midsize telescopes

limitation: gamma/hadron separation telescopes with 12 m Ø energy range: 100 GeV - 10 TeV

High-energy section

limitation: effective area telescopes with ~4-7 m ∅ energy range: > 5 TeV

Array of >50 telescopes factor 10 improvement in sensitivity 20 GeV to >300 TeV energy range significantly improved angular resolution two observatories: North and South

Low energies

limitation: photon collection and gamma/hadron separation large telescopes with 23 m Ø energy threshold: some 10 GeV
The Cherenkov Telescope Array - Large Size Telescope

Opacity of the Universe to high-energy photons

Neutrino detection

High-energy neutrino detection

IceCube

rollingstone.com

srf.ch

What Ice Cube Teaches thefederalist.com

theguardian.com

britannica.com

IceCube

ergy, allowing easily identineutrino asIceCube can robustly identify astrophysical neutrinos at PeV energies, for individual neutrinos at several hundred TeV, an atmospheric origin of neutrinos was found from the direction of TXS 0506+056 near the time of the alert, there are indications at the 3σ level of high-energy neutrino

ectrons. Inset is an overhead perspective view of the event. The best-fitting track direction is shown as an arrow, ^{0.50}_{0.30} degrees below the horizon.

B

- 10

Sources of Cosmic Rays

What are they?

Is it a single source? A single source class? Where are they? Galactic / extragalactic?

How?

acceleration mechanism, feedback on environment, ...

Maximum energy of an accelerator

Maximum energy of an accelerator

Cosmic Particle Accelerators

Fermi LAT 7-years sky map (10 GeV - 2 TeV)

>1500 sources > 10 GeV
>150 sources > 100 GeV
diffuse emission

Supernova Remnants, Binaries, Star forming regions, pulsar wind nebula, active galactic nuclei, gamma-ray bursts, nova, diffuse emission, dark matter,

Gamma-ray bursts

DESY, Science Communication Lab

Tidal Disruption Events

DESY, Science Communication Lab

Nova

DESY, Science Communication Lab

Accretion disc \

Disc wind

Accretion

Hot spot

Jet

stream

Companion

star

X-ray heating

R. Hynes 2001

DESY

Supernova remnants

radio X-ray optical

angular size similar to moon

angular size similar to moon

DESY.

SN 1006:2006

DESY

SN 1006: 1998

2400-3000 km/s

Cassiopeia A Supernova Remnant

core-collapse Supernova remnant historical (1608)

Chandra X-ray observations of Cassiopeia A:

Synchrotron emission from energetic electrons

Gamma-ray Angular Resolution

Cassiopeia A - Spectral Energy Distribution

Cassiopeia A - Spectral Energy Distribution

Supernovae Explosions & Energy Budget

assume Milky Way is filled uniformly with Cosmic Rays (CR), diffuse out diffuse out of this volume in typically t_{GD}≈10⁷y

CR energy density: $\rho_E \approx 0.5 \text{ eV/cm}^3$ (similar to starlight)

$$L_{CR} = \frac{V_{GD} \cdot \rho_E}{t_G D} \simeq 3 \times 10^{40} \text{erg/s}$$

Supernovae Explosions & Energy Budget

assume Milky Way is filled uniformly with Cosmic Rays (CR), diffuse out diffuse out of this volume in typically t_{GD}≈10⁷y

CR energy density: $\rho_E \approx 0.5 \text{ eV/cm}^3$ (similar to starlight)

$$L_{CR} = \frac{V_{GD} \cdot \rho_E}{t_G D} \simeq 3 \times 10^{40} \text{erg/s}$$

typical 2-3 Supernovae per 100 y in our Galaxy are enough to sustain this luminosity assuming a 10% conversion rate from mechanical to cosmic-ray energy

	length of		Historical Records				
date	visibility	remnant	Chinese	Japanese	Korean	Arabic	European
AD1604	12 months	$G4 \cdot 5 + 6 \cdot 8$	few	_	many	_	many
AD1572	18 months	$G120 \cdot 1 + 2 \cdot 1$	few	-	two	_	many
AD1181	6 months	3C58	few	few	_	_	_
AD1054	21 months	Crab Nebula	many	few	_	one	_
AD1006	3 years	SNR327.6+14.6	many	many	_	few	two
AD393	8 months	_	one	-	_	_	-
AD386?	3 months	_	one	_	_	_	_
AD369?	5 months	_	one	_	_	_	_
AD185	8 or 20 months	_	one	_	_	_	-

Observational Bias...

Active Galactic Nuclei

Active Galactic Nuclei

M87 HST optical

Active Galactic Nuclei

M87 HST optical

blue light: synchrotron radiation from HE electrons

jet: relativistic hot, magnetized plasma

> hot spots: shocked jet plasma

core and accretion disk

54

Active Galactic Nuclei - leptonic emission

Active Galactic Nuclei - Hadronic emission

DEY. Jaropanice Physics J Genot Mair
IceCube-170922A TXS 0506+056

RESEARCH ARTICLE SUMMARY

NEUTRINO ASTROPHYSICS

Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A

The IceCube Collaboration, *Fermi*-LAT, MAGIC, *AGILE*, ASAS-SN, HAWC, H.E.S.S., *INTEGRAL*, Kanata, Kiso, Kapteyn, Liverpool Telescope, Subaru, *Swift/NuSTAR*, VERITAS, and VLA/17B-403 teams*†

most probable neutrino energy of 290 TeV signalness to be 56.5%

New Physics

Random example!

Lorenz Invariance Violations

- Standard Model and General Relativity: best theories describing the four fundamental forces
 - no conflict between them but fundamentally different
 - —> Quantum Theory of Gravity?
 - zoo of theories of Quantum Gravity
 - predict in general new physics at the Planck Energy Scale

$$E_{\rm Pl} \simeq 1.2 \times 10^{19} {\rm GeV}$$

—> Lorentz Invariance Violation (LIV)

LIV: arrival time measurements

new dispersion relation

$$c^{2} p^{2} = E_{\gamma}^{2} [1 \pm \xi_{1} E_{\gamma} / E_{QG} \pm \xi_{2} (E_{\gamma}^{2} / E_{QG}^{2}) \pm ...]$$

depending on sign: subluminal or superluminal case

time delays in arrival times of photons

$$\delta t \simeq \left(\frac{\Delta E}{\xi_{\alpha} E_{Pl}}\right)^{\alpha} \frac{L}{c}$$

LIV: arrival time measurements - pulsars

Upper limits: ~ 10¹⁷ - 10¹⁸ eV

Relatively nearby - but repeating gamma-ray source

LIV: arrival time measurements - GRBs

GRB 080916C at z=4.3

DESY. | Astroparticle Physics | Gernot Maier

LIV: arrival time measurements - GRBs

LIV measurements: pair production threshold

- opacity of Universe to TeV gamma rays due to pair production on extragalactic background light
- LIV: change in pair production threshold

$$\epsilon_{min} = \frac{m^2 c^4}{E_{\gamma}} - S \frac{E_{\gamma}^2}{4E_{LIV}}$$

 LIV: change in Compton scattering cross section (at source)

LIV measurements: pair production threshold

LIV measurements: pair production threshold

- opacity of Universe to TeV gamma rays due to pair production on extragalactic background light
- LIV: change in pair production threshold

$$\epsilon_{min} = \frac{m^2 c^4}{E_{\gamma}} - S \frac{E_{\gamma}^2}{4E_{LIV}}$$

 LIV: change in Compton scattering cross section (at source)

Summary - astroparticle physics

- cosmic rays cosmic environment fundamental physics
- exciting new results from neutrino and gravitational wave observatories
- large number of new instruments coming online in the next years:
 - Cherenkov Telescope Array
 - IceCube 2
 - Auger upgrades
 - Gravitational wave observatories

Gast