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Quantum field theory (QFT) provides a very useful tool to

- organize our knowledge

- parametrize our ignorance

QFT plays a crucial role to

- understand/interpret experimental data

- study the evolution of the Universe



Units

we are going to use the natural unit

C:h:kgzl

that Is

Energy| = [Mass| = |Temperature| = [Length|! = [Time|-!



Units

For iInstance

lsec ~ 2 x 10°2 eV !
1 meter ~ 5 x 10%eV 1

1 gram ~ 6 x 10°° eV

1 Kelvin ~ 9 x 1072 eV

we are going to measure every quantity in eV (or GeV) unit
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Energy

Planck scale

M ~ 10%° GeV
t ~ 107* sec

[ ~ 10 %*m
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Electroweak scale Planck scale Energy
M ~ 10% GeV M ~ 10*® GeV
t ~ 107 2% sec t ~ 10~ *% sec

[~ 107" m [ ~ 10 %*m
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QCD scale Electroweak scale Planck scale Energy
M ~ 10" GeV M ~ 10% GeV M ~ 10'° GeV
t ~ 107%3 sec t ~ 107%% sec t ~ 10 % sec

[~ 107" m [ ~ 10 m [ ~ 10 %*m
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Cosmological QCD scale Electroweak scale Planck scale Energy
constant c o o
M ~ 107" GeV M ~ 10° GeV M ~ 10'° GeV
t ~ 1074 sec t ~ 1074% sec t ~ 10~ *% sec

[~ 107" m [ ~ 10 m [ ~ 10 %*m



The Standard Model

mass — =2.3 MeV/c? =1.275 GeV/c? =173.07 GeV/c? =126 GeV/c?
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How do we describe the elementary particles
and interactions between them?



Plan

Monday 01.08.22 Tuesday 02.08.22
 [agrangian * Gauge theory
* Lorentz transformation * Electroweak interaction
* Dimensional analysis e Chirality
* beta decay/muon decay « Spontaneous symmetry breaking

* Fermi theory * Higgs mechanism



Lagrangian mechanics

a particle under a potential V(x)

satisfies the equation of motion

md + V'(x) =0



Lagrangian mechanics

a particle under a potential V(x)

satisfies the equation of motion
md + V'(x) =0

Newton’s equation can be obtained from the action

S [ dt L)

1
L = im:i:Q — V(x)



From the least action principle
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From the least action principle

0=04S
= 5/dtL(:E,:b)

0L oL =
—/dt _6’:6&8 | 8;1':533_




From the least action principle

0=04S
= 5/dtL(x,:b)

/ at
/dt&c

oL
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| 0T

dt 0i

+ boundary term



From the least action principle

0

= 05

- 5/4@(@»,;@)

— [

= /dt&(;

0L 0L
0T + —0x
Ox or
oL d oL + bound X
9r  dl OF oundary term

we find Euler-Lagrange equation

doL 0L

dt Ox

ox

0




From Euler-Lagrange equation

d oL OL
dt 0+ Ox

0

the equation of motion is reproduced

mi + V' =0



Lagrangian Field Theory

Lagrangian mechanics can be extended to classical field theory

Consider Maxwell’s electromagnetic theory (in free space)

V- -E=0
V- -B=0
0B
F =
V X Y
V X B = }aE

ot



Lagrangian Field Theory

Lagrangian mechanics can be extended to classical field theory

Consider Maxwell’s electromagnetic theory (in free space)

V- -E=0
V- -B=0
0B
F —
V X Y
OF
V X B =4
: Ot = —V¢ %?

B=VxA
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Lagrangian Field Theory

It can be written in a more compact form
by introducing field strength tensor

F,, =0,4, — 0,4,

electromagnetic fields are

1 |
Ly = Foi  B; = —§€¢ijjk

A = (¢, A)
ot = (t,x)

9, = 89"
(p=20,1, 2, 3)

(i=1,2,3)



Lagrangian Field Theory AH = (¢, A)

It can be written in a more compact form = (t,%)
by introducing field strength tensor Op = 0/0x"
(p=20,1, 2, 3)

F,, =0,A, —0,A, G123

electromagnetic fields are
1 .
Ly = Foi  B; = —§€¢ijjk
Maxwell’'s equations can be written as
uy V- -E =0
0, F" =0 — IE

VX B =-

(repeated indices are contracted)

ot



Lagrangian Field Theory AH = (¢, A)

It can be written in a more compact form xt = (¢, %)
by introducing field strength tensor Oy = 0/0z"
(u=20,1,2,3)
Fuw = 0y = 0,4, (i=1,2,3)
electromagnetic fields are
1 .
Ly = Foi  B; = —§€¢ijjk
Maxwell’'s equations can be written as
2 V- -E=0
0. F" =0 «—s .
(repeated indices are contracted) VX 5= Ot

the other two equations come from Bianchiidentity o p_
0B




Lagrangian Field Theory

The corresponding Lagrangian is

L(A,04) = —iFWFW
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Lagrangian Field Theory

The corresponding Lagrangian is

L(A,04) = —iFWFW

The action iIs

_ 1 -
4 v
S:/d.f _ZF/“/FM

Using the least action principle, we find Euler-Lagrange equation

oL oL
V=950, 4, " 94,

which reproduces the Maxwell equation



Lagrangian Field Theory

_ | _
4 v
S:/dl’ _ZF,UJVFM

This classical Lagrangian field theory

describes classical electromagnetism



Lagrangian Field Theory

S:/d4x

1

4

F,, F"

This classical Lagrangian field theory

describes classical electromagnetism

When this theory Iis quantized

it describes a spin-1 gauge boson

which is photon



Lagrangian Field Theory

_ | _
4 v
S:/dx _ZF,UJVFM

This classical Lagrangian field theory

describes classical electromagnetism

When this theory Iis quantized
it describes a spin-1 gauge boson

which is photon

The other elementary particles in SM

can also be described by similar Lagrangian field theory



A brief review on Lorentz transformation



Galilean transformation

y’ t/ t

A x! B r — vt
y' Y
— U 2! 2

(transformation of coordinates in non-relativistic system)

N8 o+



1

. V= \/1 2
| orentz transformation — v
boost factor

t' v  —vyv 0 0 t
' B —vyv v 0 O X
— ) y/ - 0 0 1 O Y
X ”‘y(t — vm)
_ | vz — i)
Y
z

(time dilation & Length contraction)



. v =
Lorentz transformation V1=’
t’ v(t — vx)
| | vy(x—vt)
y' Y
— 2! z

: consider now two events
= El — (tlw/ElaOaO)O E2 — (t27x27070)(9
INn the other frame

E1 = (t7,27,0,0)0r = v(t1 —vxy, 1 — vt1,0,0) 0

Es = (t5,25,0,0)0r = Y(ta — vxa, T2 — vt9,0,0) 0



1
. V= \/1 2
| orentz transformation — v

consider now two events

by = (t17$17070)0 By = (t27x27070)(9

In the other frame
FEi1=(t],27,0,0)0r = ~(t1 — vr1, 21 — vt1,0,0) 0

, Ey = (t5,25,0,0)0r = vy(ta — vxg, x9 — vt2,0,0) 0
the distance between two events Is
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INn the other frame

FEi1=(t],27,0,0)0r = ~(t1 — vr1, 21 — vt1,0,0) 0

Es = (t5,25,0,0)0r = v(to — vxg, x9 — vt2,0,0) 0
the distance between two events is
A2 — (tg — t1)2 — (213‘2 — .5131)2
A = (th — 1) — (a} — 2} )’

= ”YQ[(?E —t1) —v(z2 — fl)]Q — 72[(@ — 1) —v(l2 — tl)]2
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INn the other frame

FEi1=(t],27,0,0)0r = ~(t1 — vr1, 21 — vt1,0,0) 0

Es = (th,25,0,0)0r = y(ta — vao, x9 — vt,0,0)0

the distance between two events is
A= (ty —t1)° — (29 — 21)7
A = (ty — 1)? — (ah — 2}’
= *[(t2 — t1) —v(w2 — 21)]° — ¥ [(22 — 21) — v(t2 — 11)]°
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INn the other frame

FEi1=(t],27,0,0)0r = ~(t1 — vr1, 21 — vt1,0,0) 0

Es = (t5,25,0,0)0r = v(to — vxg, x9 — vt2,0,0) 0

the distance between two events is
A= (ty —t1)° — (29 — 21)7
A? = (th — ) — («h — ;)
= *[(ty — t1) — v(zz — 21)]7 = y*[(w2 — 21) — v(t2 — 11)]
= (1 —v°)(ta — t1)° — v (1 — v*)(z2 — 21)7
= (ta —t1)” — (x2 — x1)"
— A?

[ orentz-invariant distance between two events



Lorentz Algebra

ot = (t,x,y,z) w=01,23
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Lorentz Algebra

ot = (t,x,y,z) w=01,23
quantities with indices u, v, ... transforms as Lorentz vector
ot — o't = AP ¥

with a Lorentz transformation matrix

v —vy 0 O

no_ —vy v 0 0
A% 0 0 1 O
0 0 0 1

(repeated indices are contracted)



Lorentz Algebra

ot = (t,x,y,z) w=01,23

the invariant distance (line element) can be written as
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Lorentz Algebra

ot = (t,x,y,z) w=01,23

the invariant distance (line element) can be written as
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with a metric tensor



Lorentz Algebra

ot = (t,x,y,z) w=01,23
the invariant distance (line element) can be written as
2 42 2 2 2 _
A =t"—z2° -y — 2" =z’ =z,a"

with a metric tensor

1 0 0 O

o -1 0 o0
=1 0 0 =1 0
0 0 0 -1

A quantity with lower index is defined as

Ly = 77W5'3V — (t, —4y, Y, _Z)



Lorentz Algebra

ot = (t,x,y,z) w=01,23

the invariant distance (line element) can be written as
A? =t — g% —y® — 2% = Nz’ =x,a"
it is straightforward to check
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Lorentz Algebra

ot = (t,x,y,z) w=01,23

the invariant distance (line element) can be written as
A? =t — g% —y® — 2% = Nz’ =x,a"
it is straightforward to check

b v
nMVA M,A I// — nM/V/

0 0 1 0 0 0 Y —vy 0 O 1 O
0 O 0 —1 O 0 vy v 0 0| | 0O =1
I O o 0 -1 0 0 0 1 0| [ O O
0 1 0 O 0 -1 0 0O 0 1 0 O



Lorentz Algebra

ot = (t,x,y,z) w=01,23
the invariant distance (line element) can be written as

2 42 2 2 2 __ W Vo L
A =t"—x" -y — 2" =na'r” =z,

it is straightforward to check

b v __
nMI/A M/A I// — 77”/1//

we will require any field theory to be Lorentz invariant
just like Maxwell’s theory
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Equations of motion of elementary particles

Schrodiner equation

non-relativistic; one-particle QM

0 V?
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(n" 9,0, +m?*)® = 0 (when quantized)

Dirac equation

spin-1/2 fermions
(2y" 0, —m)p =0 (when quantized)




Equations of motion of elementary particles

Schrodiner equation

non-relativistic; one-particle QM

2

p
E = -V
2m

0 V?
(Z@t - 2m V)w—O

Klein-Gordon equation
spin-0 bosons

(n" 9,0, +m?*)® = 0 (when quantized)

Dirac equation

spin-1/2 fermions
(2y" 0, —m)p =0 (when quantized)




Equations of motion of elementary particles

Schrodiner equation

non-relativistic; one-particle QM

2

p
E = -V
2m

0 V?
(Z@t - 2m V)w—O

Klein-Gordon equation
spin-0 bosons

(n" 9,0, +m?*)® = 0 (when quantized)

E2:p2_|_m2

Dirac equation

spin-1/2 fermions
(2y" 0, —m)p =0 (when quantized)




Scalar Lagrangian

1

m2 ¢2

1
L= 2(0,6)(0"9)
the least action principle reproduces Klein-Gordon equation

S = [ d'w (6,0,



Scalar Lagrangian

1

m2 ¢2

1
L= 2(0,6)(0"9)
the least action principle reproduces Klein-Gordon equation

S = [ d'w (6,0,

0=05



Scalar Lagrangian

1
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1
L= 2(0,6)(0"9)
the least action principle reproduces Klein-Gordon equation
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0=05
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Scalar Lagrang

1

lan

£ = 5(0,0)(0"9)

m2 ¢2

the least action principle reproduces Klein-Gordon equation

S = [ d'w (6,0,

0=05
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+ boundary term




Scalar Lagrangian

1

m2 ¢2

1
L= 2(0,6)(0"9)
the least action principle reproduces Klein-Gordon equation

S = [ d'w (6,0,

0=05

oc oL
_ / o (66755 +0(0u8) 55

— / d*x O gg 0, (3’85’£¢ + boundary term
i T




Scalar Lagrangian

1 1
L= (0,0)(0"¢) — 5m*¢’
Euler-Lagrange equation

oL oL

96 O 90,6

Klein-Gordon equation is reproduced

(N 0,0, + m?)¢p =0



Scalar Lagrangian

1
L= 5 (0,0)(0"6) ~ 5

Lorentz transformation
ot — o't = AF "
o(x) = ¢'(2") = ¢(x)
0 — 9yt = A, 0,0



Scalar Lagrangian

L= (0,0)(0"6) — ym*

Lorentz transformation
ot — 't = AP 2
d(z) — ¢'(2") = ¢(z)
Oup — 090" =N V0,0
then
Y 00,0 =0t AN 0,00,0
=" 0,00,

the Lagrangian is Lorentz invariant



Scalar Lagrangian

More generally

1
2m2¢2 + X3¢ + Ag9* + - -

£ = 5(0,0)(0"9)

terms higher order in ¢ describes interactions among spin-0 bosons



W -

"

Fermion Lagrangian

L = &(iVMau —m)

what does each term mean?

4-component Dirac spinor that describes spin-1/2 particle

Dirac matrices (4 by 4 matrix, n=0, 1, 2, 3) satisfying Clifford algebra {+",~v"} = 2n"”

Euler-Lagrange equation for ¥ gives Dirac equation

(2y" 0, —m)p =0



Fermion Lagrangian
L = P(i" 0y, — m)y

under the Lorentz transformation

"QEZD — &w (Lorentz scalar)

&7“¢ N AMV (&7%@ (Lorentz vector)

the above Lagrangian is invariant under the Lorentz transformation

(we do not prove this here)



one can construct a model of scalar and fermion with interactions

1 - _
Sm?¢% (i, — m)y — yoiy

Lo
£ =00



one can construct a model of scalar and fermion with interactions

L= (06) — 5m?@ + §(ir"d, — m)w = ydibi
(0
------- o
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Yukawa interaction (1935)



one can construct a model of scalar and fermion with interactions

L= (06) — 5m?@ + §(ir"d, — m)w = ydibi
(0
------- o
(0

Yukawa interaction (1935)

first introduced to explain the interaction between nucleon

Yukawa interaction is exactly how the SM fermions obtain mass from Higgs



one can construct a model of fermion and photon field

£= _i 1+ (i By — ) — e Aoy
¥
N
¥

Quantum electrodynamics (QED)



as a warm up
we Will make some estimations on physical processes like

. _ b
(1) Higgs decay h —s bb B e <

(2) Higgs production gg — h

(3) muon decay u —ev e _§ 7
1%

L

€

(4) neutron decay n — per, n _é .

p

we Wwill estimate the cross-section and decay rate for above processes



spin-0

Dimensional analysis

L= (00)(06) + - —




spin-0

spin-1/2

S| =0
S

L] =4
L= (06)(00) —
Yoy —mip -0 ——

L

Dimensional analysis




spin-0

spin-1/2

spin-1

Dimensional analysis

5] =0
S:/d4af£
L] =4
L= (06)(06) + - — g =1
L=y, —m)p + - - — Y| = 3/2
L=~ 1P " 4. —  [A]=1

4
F,, =0,A, —0,A,



Dimensional analysis

S] =0
S = /d4a;‘£
L) =4
Spin-0 L= 5(00)(09) + — ¢ =1
spin-1/2  L=9(y"0 —m)yp+--- ——  [P]=3/2
Spin—1 [::—i i P A4 —_— [A,u] = 1

F,, =0,A, —0,A,

cross section & decay rate




Higgs decay
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Higgs decay
L = yopyy)

the decay rate Is

2

1

ST

2




Higgs decay
L = ypi)

the decay rate Is

2
b 1

y 2
..... ~ —Yy m
[ o |k <b AL

Higgs interaction to fermion is proportional to the fermion mass

_ My

Y =
U

Higgs decays dominantly to heavy fermions, e.g. bottom quark

L] =

9] =

] =3/2
y| =0



Higgs decay
L = ypi)

the decay rate Is
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Higgs decay
L = ypi)

the decay rate Is

N b
e
b
()
ST \ v




Higgs decay
L = ypi)

the decay rate Is




Higgs production

L D gsG,ty"'t — yhtt

h] =1
1] = 3/2
G =1
9s| =



O

Higgs production

L D gsG,ty"'t — yhtt

g; m; 1

9s

1672 v2 m

2
t

~ 107 m? = 10 pb

1 barn = 1072% m?

] =1
1] = 3/2
[Gu] =1



O

Higgs production

L D gsG,ty"'t — yhtt

g; m; 1

1672 v2 m?

loop + gauge coupling

~ 107 m? = 10 pb

1 barn = 1072% m?

h] =1
1] = 3/2
G =1
9s| =



O

L D gsG,ty"'t — yhtt

g5

Higgs production

9

Yukawa

2
Ty

1

9s

1672 v2 m

2
t

loop + gauge coupling

~ 107 m? = 10 pb

1 barn = 1072% m?

h] =1
1] = 3/2
G =1
9s| =



O

Higgs production

L D gsG,ty"'t — yhtt

g gs

Yukawa dimension

g; m; 1

1672 v2 m?

loop + gauge coupling

~ 107 m? = 10 pb

1 barn = 1072% m?

] =1
1] = 3/2
Gl =1
9s| =



O

N = a/dtL ~ 10pb x 100fb~* = 108

L D gsG,ty"'t — yhtt

g5

Higgs production

2
m; 1

1672 v2 m

2
t

at LHC

~ 107 m? = 10 pb



Fermi Theory

beta decay



beta decay

137
56B

d




beta decay

137
568a
137
55Cs
@
® e- 7
OT— e

Energy spectrum of beta
decay electrons from 20 B;

Intensity

0 02 04 0.6 0.8 1.0 1.2
Kinetic energy, MeV



beta decay

Ifitis2-bodydecay A — B +e

electron spectrum cannot be continuous

Instead

m2 + m2 — m

Eelectron —

QTTLA

Energy spectrum of beta
decay electrons from 20 B;

Intensity

0 0.2 0.4 0.6 0.8 1.0 1.2
Kinetic energy, MeV



beta decay

Ifitis2-bodydecay A — B +e

electron spectrum cannot be continuous

Instead

m2 + m2 — m

Eelectron —

QTTLA

If it is N-body decay (N>2) A—Bi1+Bs+---+ By_1+e

Energy spectrum of beta

210 @ .
decay electrons from “ B electron spectrum can be continuous

Intensity

0 0.2 0.4 0.6 0.8 1.0 1.2
Kinetic energy, MeV



beta decay

Ifitis2-bodydecay A — B +e

electron spectrum cannot be continuous

Instead

2 2 2
My~ Mme —INg

Eelectron —

QTTLA
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Energy spectrum of beta
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decay electrons from “ B electron spectrum can be continuous

Intensity

 Pauli (1930) if a light neutral particle (neutrino) is emitted
along with electron, the spectrum can be explained
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beta decay

Ifitis2-bodydecay A — B +e

electron spectrum cannot be continuous

Instead

2 2 2
My~ Mme —INg

Eelectron —

QmA

If it is N-body decay (N>2) A—Bi1+Bs+---+ By_1+e

Energy spectrum of beta

210 @ .
decay electrons from “ "B electron spectrum can be continuous

Intensity

 Pauli (1930) if a light neutral particle (neutrino) is emitted
along with electron, the spectrum can be explained

0 02 04 06 08 10 12 e Fermi (1933) L = Gp(ﬁ”yup)(ﬂev“e)

Kinetic energy, MeV



Fermi theory Gp| = -2

L =G F(ﬁ%p)(gwu 6) Gr ~ 107° GeV 2

(Fermi constant)

Fermi theory successfully explains 3-decay as well as muon decay
B — eV, Ve

N — PEle



Fermi theory Gp| = -2

=G F(f,—wﬂp)(gewu e) Gr ~ 107° GeV 2

(Fermi constant)

Fermi theory successfully explains 3-decay as well as muon decay
B — eV, Ve

N — PEV,

using dimensional analysis

[" —G% x G3m”




Gr ~ 107° GeV ™ °

using dimensional analysis m,, ~ 0.1 GeV
2
Gr
[" —% x G3m”
for muon
G%m?

1o~ (2.2p5ec)

M'p™ — e v,ve) = T




Gp ~ 107" GeV~?
using dimensional analysis m,, ~ 0.1 GeV

2

Gr
" x G%m®

for muon

GHm? _
1527; ~ (2.2usec)

D(p™ = e vure) = [Particle Data Group]

p MEAN LIFE 7

Measurements with an error > 0.001 x 10 6 s have been omitted.

VALUE (10_6 s) DOCUMENT ID TECN  CHG COMMENT

2.1969811 +0.0000022 OUR AVERAGE
2.1969803 +0.0000021 +0.0000007 1 TISHCHENKO 13 CNTR + Surface ut at PSI
2.197083 +0.000032 +0.000015 BARCZYK 08 CNTR + Muons from 7+

decay at rest

2.197013 +0.000021 +0.000011 CHITWOOD 07 CNTR + Surface pT at PSI
2.197078 +0.000073 BARDIN 8 CNIR +

2.197025 +0.000155 BARDIN 84 CNTR —

2.19695 +0.00006 GIOVANETTI 84 CNTR +

2.19711 40.00008 BALANDIN 74 CNTR |

2.1973  +0.0003 DUCLOS 73 CNTR +

e o ¢ \We do not use the following data for averages, fits, limits, etc. @ o o

2.1969803 + 0.0000022 WEBBER 11 CNTR + Surface 1 at PSI

1 TISHCHENKO 13 uses 1.6 x 1012 41 events and supersedes WEBBER 11.




using dimensional analysis

2
Gr
N R

for muon

G4m? _
15%5 ~ (2.2usec)

M'p™ — e v,ve) =

for neutron

G%Am?

3

['(n — pev,) ~ ~ (10° sec) ™!

Am = m, —m, ~ 1.3 MeV



using dimensional analysis

2

Gr
" x G%m®

for muon

G4m? _
15%5 ~ (2.2usec)

M'p™ — e v,ve) =

for neutron

G%Am?

. N (103 SeC)_l VALUE (s)
T

878.4 = 0.5 OUR AVERAGE
below. [879.4 + 0.6 s OUR 20z

['(n — pev,) ~

Am = m, —m, ~ 1.3 MeV



using dimensional analysis

2

" —G% x G3m”>

(dimensional analysis)

with the same G F

neutron decay/muon decay can be explained

neutron decay/muon decay proceed

through the same weak interaction



4-Fermi interaction can be viewed as a current-current interaction (like EM)
L=GpJfJ*

JTH — (ﬁvl‘p + evHu, + ﬂfy/iy“ 4 .. )
JH =P+ vete+vytp )

the cross terms generate neutron/muon decay



Problems of Fermi Theory



From the same current-current interaction

L = GFJ:J_’u

J = (pHn

v.yHe

Uyt




From the same current-current interaction

L = GFJ:J_’u

J = (pHn

this also generates electron-neutrino scattering

€

v.yHe

Uyt

€




From the same current-current interaction

L = GFJ:J_’u

JH = (py"n + verye

Uyt

)

this also generates electron-neutrino scattering

€

€

2 172
o X Gyl
cross-section cannot grow arbitrarily

this 4-Fermi theory becomes inconsistent

at some high energy scale



this also generates electron-neutrino scattering

€

From the same current-current interaction

L = GFJ:J_’“

JH =

€

Ve

(PYH'n + veyte

(quantum correction)

Uyt

€

Ve




From the same current-current interaction

L = GFJ:J_’“

JH = (py"n + veyte

Uyt

this also generates electron-neutrino scattering

€ € &

Ve Ve Ve

(quantum correction)

€

Ve

o ox GLE"

o] = —2
Grp| = —2
G+ E°



From the same current-current interaction

L = GFJ:J_’u

JH =

(PYH'n + veyte

vyt

this also generates electron-neutrino scattering

€

€

Ve

(quantum correction)

€

Ve

Gp] = —2
)
o ox G%E? - : GLE°
1672

when

—
E=F. .« =2,/ —
V Gr

perturbation theory breaks down



the current-current interaction seems to suggest

weak interaction might be mediated by spin-1 bosons

before we present resolution to the problem of Fermi theory

let us discuss gauge symmetry



Let us go back to Quantum Electrodynamics (QED)

1

L = _Z ,uVF'uV T @E(nylua,u T m)?ﬁ T 6"4#@;/7”?70
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this theory has a U(1) global symmetry

l.e. the Lagrangian is invariant under

Y — eiOé@D (¢ = const.)



Let us go back to Quantum Electrodynamics (QED)

1

L = _Z ,uVF'uV T @E(nylua,u T m)?ﬁ T 6"4#@;/7”?70

this theory has a U(1) global symmetry

l.e. the Lagrangian is invariant under
b — e (o = const.)
it is straightforward to check
Y — Py
vyt — iyt

so that whole Lagrangian is invariant under the global U(1) transformation



Let us go back to Quantum Electrodynamics (QED)

1

L = _Z ,uVF'uV T @E(nylua,u T m)?ﬁ T 6"4#@;/7”?70



Let us go back to Quantum Electrodynamics (QED)

1

L = _Z ,uVF'uV T @E(nylua,u T m)?ﬁ T 6"4#@;/7”?70

Actually, the theory contains a larger symmetry, U(7) gauge symmetry

Y — eia(x)w Ay = Ay — éau@(a?)



Let us go back to Quantum Electrodynamics (QED)

1 . —
L = _ZFMVFMV + w(iW'MQM — m)Y — 6Au¢”¥”¢

Actually, the theory contains a larger symmetry, U(1) gauge symmetry
- 1
Y — em(@w Ay = Ay — gﬁua(:p)
since a = a(x) we find

@(i”r“au)lﬂ — @(’W“%)w — lﬁ“w(@u@)



Let us go back to Quantum Electrodynamics (QED)

1

L = _Z ,uVF'uV T @E(nylua,u T m)?ﬁ T 6"4#@;/7”?70

Actually, the theory contains a larger symmetry, U(1) gauge symmetry
v — em(@@b A, = A, — éaua(g;)
since a = a(x) we find
P(iy"0u)Y — PY(iv" 0 )b — Py (Oue)
e Aoyt — eA byt — Py (O,a)

so the theory is invariant under local gauge transformation
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1
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local gauge invariance plays a fundamental role in modern particle physics



Let us go back to Quantum Electrodynamics (QED)

1

L = _Z ,uVF'uV T QE(ZVMQU IR m)?ﬁ T €AMEW”¢

local gauge invariance plays a fundamental role in modern particle physics
in QED [U(1) gauge theory]

e gauge invariance allows A_p to contain only 2 polarization states

 guarantee that the photon remains massiless

(m*A, A" is not gauge invariant)

* required for the consistency of the theory



Let us go back to Quantum Electrodynamics (QED)

1

L = _Z ,uVF'uV T QE(ZVMQU IR m)?ﬁ T €AMEW”¢

local gauge invariance plays a fundamental role in modern particle physics
in QED [U(1) gauge theory]

e gauge invariance allows A_p to contain only 2 polarization states

 guarantee that the photon remains massiless

(m*A, A" is not gauge invariant)

* required for the consistency of the theory

gauge invariance Is often taken as a starting point for building a consistent theory



U(1) gauge symmetry, again

let us now take the local gauge invariance as a starting point
and require a theory to be invariant under the local gauge transformation

consider a theory of a complex scalar field

L= (0"9)"(0up) —m°|¢|°



U(1) gauge symmetry, again

let us now take the local gauge invariance as a starting point
and require a theory to be invariant under the local gauge transformation

consider a theory of a complex scalar field
L= (0"9)"(0u0) —m*|4|*
under the gauge transformation

¢ N eioz(a:)¢



U(1) gauge symmetry, again

let us now take the local gauge invariance as a starting point
and require a theory to be invariant under the local gauge transformation

consider a theory of a complex scalar field
L= (0"9)"(Oue) — m*|¢|*
under the gauge transformation
¢ — )¢
the derivative transforms
0,0 — ') (9, +i0,0)

to compensate this we need to introduce a gauge field



A, — A, — 1(fﬂuoz
U(1) gauge symmetry, again )

consider a theory of a complex scalar field

L= (0"¢)"(0u0) — m*|¢|°
under the gauge transformation
¢ N 67Loz(a:)¢
the derivative transforms

0 — (9, +1i0,a)¢
a convenient way to introduce a gauge field is through covariant derivative
D¢ = (0, +ieA,)d
D¢ — €D ¢

(Dp9) (Do) — (Dpo)™ (Dpo)



D, =0, +1ieA,
U(1) gauge symmetry, again

a theory of complex scalar field invariant under U(1) gauge symmetry

L= (D"$)"(Duo) — m*|o|*

(scalar guantum electrodynamics)

repeating the same exercise for the Dirac theory leads to

L =vY(iy* D, — m)y
— @(iv“@u — m)w — eAM@Ey“gb



D, =0, +1ieA,
U(1) gauge symmetry, again

a theory of complex scalar field invariant under U(1) gauge symmetry

L= (D"$)"(Duo) — m*|o|*

(scalar guantum electrodynamics)

repeating the same exercise for the Dirac theory leads to

L =vY(iy* D, — m)y
— @(iv“@u — m)w — QAM@EVI%D

L
Jem



Non-Abelian gauge symmetry

we can generalize U(1) gauge symmetry by considering a more general transformation

let us consider for simplicity SU(2) transformation

Y = ( ¥1 ) (11.2: Dirac fields)



Non-Abelian gauge symmetry

we can generalize U(1) gauge symmetry by considering a more general transformation

let us consider for simplicity SU(2) transformation

Y = ( ¥1 ) (11.2: Dirac fields)

b — Uz)yp = e Ty

introduce gauge field through covariant derivative

D, = (0, +19A,)Y = U(zx)D,
)

(0,U)U! A=A, T"
g

A, —»UA U +

T =0%/2
for SU(2)



Non-Abelian gauge symmetry

we can generalize U(1) gauge symmetry by considering a more general transformation

let us consider for simplicity SU(2) transformation
?p — ( wl ) (wl,Q: Dirac ﬁelds)
P2

b — Uz)yp = e Ty

introduce gauge field through covariant derivative

D, = (0, +19A,)Y = U(zx)D,
)

(0,U)U! A=A, T"
g

A, —»UA U +

with a field strength tensor
T =0%/2

F,, =0,A,—0,A,+iglA,,A)] - UF, U’ for SU(2)



F,=0,A —0,A,+i9[A,, A
Non-Abelian gauge symmetry

1 —,
L = _Z W/F,uu _l_w(Z/YUJDM o m)w

D g(0A)AA + g°AAAA

(self-interaction between gauge fields unlike U(1) gauge theory)



F,=0,A —0,A,+i9[A,, A
Non-Abelian gauge symmetry

1 —,
L = _Z W/F,uu +¢(W“Du o m)w

D g(0A)AA + g°AAAA

(self-interaction between gauge fields unlike U(1) gauge theory)

a H a, | b, v

b,I/ ;\ C)p C;p dyo-



F,=0,A —0,A,+i9[A,, A

Non-Abelian gauge symmetry D, =, +igA,
| A, = AT®
L= = FuF" + (" Dy — m)y T = 6%/



— O

o =

Non-Abelian gauge symmetry

1 —,
L = _Z W/F,uu _l_w(Z/YUJDM o m)w

D Q@EVMA,Uﬂb

F,=0,A —0,A,+i9[A,, A

D, =0, +1tgA,
A, :AZTG’
T =0%/2



Non-Abelian gauge symmetry

1 —,
L = _Z W/F,uu _l_w(Z/YUJDM o m)w

D Q@EVMA,Uﬂb

— gzﬁfy“TawAZ = J"™MA,

F,=0,A —0,A,+i9[A,, A

D, =0, +1tgA,
A, :AZTG’
T =0%/2



Non-Abelian gauge symmetry

1 —,
L = _Z W/F,uu _l_w(Z/YUJDM o m)w

D Q@EVMA,Uﬂb

— gzﬁfy“TawAZ = J"™MA,

g - A3 Al — A2
— Iyt ( n u u
% A}L + zAZ —Ai

F,=0,A —0,A,+i9[A,, A

)v

D, =0, +1tgA,
A, :AZTG’
T =0%/2



T = o%/2

The form of current-current interaction Y =-1/2

suggests that weak interaction might be mediated by spin-1 particles

introduce SU(2) x U(1) gauge theory



T = o%/2
introduce SU(2) x U(1) gauge theory Y =-1/2
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T = o%/2
introduce SU(2) x U(1) gauge theory Y =-1/2

Ve
=)
under gauge transformation

w N eiaa’(a:)TaeiYﬁ(:v)w

— EGW’LeW; + evHv. W,



T = o%/2
introduce SU(2) x U(1) gauge theory Y =-1/2

Ve
=)
under gauge transformation

w N eiaa’(a:)TaeiYﬁ(:v)w

the Lagrangian is

L = iy (9, — g AT —ig'Y By )i

— EGW’LeW; + evHv. W,



T = o%/2
introduce SU(2) x U(1) gauge theory Y =-1/2

Ve
=)
under gauge transformation
w N eiaa’(a:)TaeiYﬁ(:v)w
the Lagrangian is
L = @m“(ﬁu —1gAT" — ig'Y B,

(v, € )7“( gA;, — 9'By, \@QWJ ) ( Ve )
) \@QW; gAfL + ¢'B,

= U y" 6W: + evHv. W, Wt _




the Lagrangian is

L = iy (0, — igART* —ig'Y By,)y

_ —g'B,  V2gW
( 1 ( \/ZC]WM gAz + 9'B,.

X Eev‘LeW: + evHve W,

Ve

_ 1 —— - 42
W,u — E(A'u — ZAM)
7 = 94, — 9'By
H \/92_|_g/2
3
A, g' Ay + 9B,




The form of current-current interaction

suggests that weak interaction might be mediated by spin-1 particles

€ €

€ €

-
—_—

VG VG

V@ V@
94 2
o ox G5 E? 0 X —5



The form of current-current interaction

suggests that weak interaction might be mediated by spin-1 particles

e &
€ e
-
—_—
VG VG
Ve Ve
94 2
2 12
2 2 \2
(E _I_mW>

in a low energy limit, the left and right is the same provided

2

9

Gp X 5

My



The form of current-current interaction

suggests that weak interaction might be mediated by spin-1 particles

Ve Ve

2 _ _ _
L=-—myW W H+gWr J " +gW J*
JTH — (fm/,up_|_ evHv, + /_LVMVM €. )

I =(Py'n+vAe +vptut )



L=—miyWiWH+gWiJ "+ gW, JH
JTH = (my!'p + eyt've + iy vy 4 - -)

JH =Pt vete+vntp )

In low energy limit

we can ‘integrate out’ heavy gauge boson by using the equation of motion

0L — 0 — W, = —92 J,
OW My




L=—miyWiWH+gWiJ "+ gW, JH
JTH = (my!'p + eyt've + iy vy 4 - -)

JH =Pt vete+vntp )

In low energy limit

we can ‘integrate out’ heavy gauge boson by using the equation of motion

0L — 0 — W, = —92 J,
OW My

the same current-current interaction of Fermi theory !

e
L= J;fJ_”
My,




L=—miyWiWH+gWiJ "+ gW, JH
JTH = (my!'p + eyt've + iy vy 4 - -)

JH =Pt vete+vntp )

In low energy limit

we can ‘integrate out’ heavy gauge boson by using the equation of motion

0L — 0 — W, = —92 J,
OW My

the same current-current interaction of Fermi theory !




While the parity symmetry (x-> -x) is a good symmetry of QED
it Is maximally broken by weak interaction

which is confirmed by a series of experiments in 50°’s [e.g. Wu et al (57)]



Chirality / Helicity

particles of spin s has (2s+17) independent states (QM)

electron has two states

@ @

— S «— 5
right-handed left-handed
(helicity = +1/2) (helicity = -1/2)
1
h=—-p-85



Chirality / Helicity

consider a right-handed massive electron

@ r —@

— S — S

right-handed left-handed

helicity is not Lorentz invariant
it changes depending on the choice of frame




Chirality / Helicity

consider a right-handed massl/ess electron

I o

@ @
— S — S

right-handed right-handed

since the particle is massless

helicity becomes invariant under Lorentz transformtion



Chirality / Helicity

consider a right-handed massless electron

o

o @ —
— S — S

right-handed right-handed

left-handed (e_L) and right-handed (e_R) particle

are fundamentally different



Experiment by Wu
57Co — 5aNi+ e~ + v,

Ve

(right-handed antineutrino)

€ (left-handed electron)

JZ:5 Jz:4 Jz:Jz,D+Jz,e:1



Experiment by Wu
57Co — 5aNi+ e~ + v,

If parity were symmetry of weak interaction

one should also see €
(right-handed electron)

/\

—_— 4+
60 JIENE (left-handed anti-neutrino)
-0 S

Ve

JZ:5 Jz:4 Jz:Jz,D+Jz,e:1



Experiment by Wu
57Co — 5aNi+ e~ + v,

If parity were symmetry of weak interaction

one should also see €
(right-handed electron)

S

60 JIENE (left-handed anti-neutrino)
2700 2 N1

/\

Ve

JZ:5 Jz:4 Jz:Jz,D+Jz,e:1

parity is maximally broken; only left-handed particles participates in weak interaction



SM is a chiral theory



Fermion mass term

only left-handed particle participates in the weak interaction

since weak interaction Is gauge interaction it would mean that
left-handed and right-handed leptons transform differently

under SU2)xU(1) gauge symmetry

7 Vr, a(x)-o —1 Vr,
eR%ezﬁeR (6L>%6()/26 5/2(€L>



Fermion mass term

On the other hand

fermion mass term is
L = —merepr + h.c.

which Is not gauge invariant
The SM Lagrangian should NOT contain fermion mass term

Fermion masses are emergent in SM (from Higgs)
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Fermion mass term

On the other hand
fermion mass term Is

L =—mereprn + h.c.

/N
Y=1/2 Y=-1

(should also be a part of doublet w. neutrino) L

iIntroduce Higgs doublet and write




Fermion mass term

On the other hand
fermion mass term Is

L =—mereprn + h.c.

/N
Y=1/2 Y=-1

(should also be a part of doublet w. neutrino) L

iIntroduce Higgs doublet and write
Me

cnu(2) (o o




Fermion mass term

On the other hand
fermion mass term Is

L =—mereprn + h.c.

/N
Y=1/2 Y=-1

(should also be a part of doublet w. neutrino) L

iIntroduce Higgs doublet and write
Me

cnu(2) (o o




Spontaneous symmetry breaking

previously we consider 4-Fermi theory and discuss
that 4-Fermi theory originates from SU(2)xU(1) electroweak gauge theory

L = GFJ:J_’M

L=—miyWiWH+gWiJ "+ gW, J*



Spontaneous symmetry breaking

we have also discussed that if we require gauge invariance
gauge bosons are necessarily massless
while from the observation weak bosons are massive

L=—miWy W+ gWiJ "+ gW, J*



Spontaneous symmetry breaking

we have also discussed that if we require gauge invariance
gauge bosons are necessarily massless
while from the observation weak bosons are massive

L=—miWy W+ gWiJ "+ gW, J*

how do we provide mass to weak gauge bosons?
Through spontaneous symmetry breaking by Higgs



| D, =0, + A,
Spontaneous symmetry breaking

let us consider U(1) gauge theory
particularly, scalar electrodynamics

L = (D"¢)* (Do) — V(|6|*)

V(o) = —m®|¢|" + Alg[*

v

()

=
-

scalar field obtains vacuum expectation value (VEV)

() = v =1/m?/2)

Im(¢)




| | D, =0, + A,
Higgs mechanism

let us consider U(1) gauge theory
particularly, scalar electrodynamics

L = (D"¢)* (Do) — V(|¢|?)
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Higgs mechanism

let us consider U(1) gauge theory
particularly, scalar electrodynamics

L = (D"¢)* (Do) — V(|¢|?)
D €2A/LAM‘¢|2

due to scalar VEV <> = v
the gauge boson obtains mass

my = e (|¢]°) = e™v”

D, =0, + A,



| | D, =0, + A,
Higgs mechanism

let us consider U(1) gauge theory
particularly, scalar electrodynamics

L = (D"¢)* (Do) — V(|¢|?)
D €2A/LAM‘¢|2

due to scalar VEV <> = v
the gauge boson obtains mass

my = e (|¢]°) = e™v”

in this way (spontaneous symmetry breaking)
gauge boson can obtain mass without breaking gauge symmetry



D, H = (9, —igWeT* —ig'Yy B,)H

Application to the SM Vi = 1/2

L= (D"H)*(D,H) - V(H?)

Symmetry of SM V(|H|)? = \(|H|?

SU(Q)L X U(l)y

|||||

Symmetry of vacuum

o1em  __ |




D, H = (9, —igWeT* —ig'Yy B,)H

Application to the SM Vi = 1/2

L= (D"H)" (D, H) - V(H)

02)2
2

Symmetry of SM V(|H|)? = \(|H|?

SU(Q)L X U(l)y

Symmetry of vacuum ' (H) = ( v/(z/ﬁ )
U(1)em —
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Application to the SM Vi = 1/2

L= (D"H)*(D,H) - V(H?)

Symmetry of SM V(|H|)? = \(|H|?

SU(Q)L X U(l)y

Symmetry of vacuum
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Application to the SM Vi = 1/2

L= (D"H)*(D,H) - V(H?)

Symmetry of SM V(|H|)? = \(|H|?

SU(Q)L X U(l)y

Symmetry of vacuum 1 ( gW?3 —¢' B 2gW+ )2 ( 0 >

U(1)em
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Application to the SM Vi = 1/2

L= (D"H)*(D,H) - V(H?)

Symmetry of SM V(|H|)? = \(|H|?

SU(Q)L X U(l)y

Symmetry of vacuum

U(1)em



D, H = (9, —igWeT* —ig'Yy B,)H

Application to the SM Vi = 1/2

L= (D"H)*(D,H) - V(H?)

Symmetry of SM V(|H|)? = \(|H|?

SU(Q)L X U(l)y

V2gW~  ¢'B—gW?
Symmetry of vacuum D, H[? — 1(0 ) gW3 —¢B  V2gWT 270
U(1) M VA v
cI1
1 0
=50V agewrw 4 (oW - B2 v
2,2 2 /
= S WIW T 4 (gW - ¢'B)]



D, H = (9, —igWeT* —ig'Yy B,)H

Yy = 1/2
W3 _—¢B 2w )2( 0 ) 0
D HI?2 — M(g i H:<>
~ L0 0
g 20°WHTW = + (gW?° — ¢'B)? v
2,,2 2 /
294 W+W— A 8(gW3—gB)2

one direction remains massless: photon!

A =
\/92 _|_g/2




D, H = (9, —igWeT* —ig'Yy B,)H

Yy =1/2
W3 — g B 2gW+ >2< 0 ) 0
D, H|? = M(g 3 H:<>
1 0
— g( U) 292W+W— 4 (gWS o g/B)Q 0
22)2 B U2 /
— 94 W+W~— A ? (gW? — ¢’ B)?
miy

one direction remains massless: photon!

A =
\/92 _|_g/2




D, H = (9, —igWeT* —ig'Yy B,)H

Yy = 1/2
W3 — g B 2gW+ )2(()) 0
D, HI? = M(g 3 H:<>
~ L0 !
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W \/92_|_g/2

one direction remains massless: photon!

A =
\/92 _|_g/2




D, H = (9, —igWeT* —ig'Yy B,)H

Yy = 1/2
W3 — g B 2gW+ )2(()) 0
D, HI? = M(g 3 H:<>
~ L0 !
— g 20°WTW = + (gW? — ¢’ B)? v
2.2 2
g-v v
- W+W~— A ? (gW? — ¢’ B)?
3 ./
m2 Z:gW gB
W \/92_|_g/2

1
= miy WTW ™ + §m2222

one direction remains massless: photon!
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D, H = (8, —igW, — i%Bu)H

Application to the SM

|DuH‘2 — gQIZW W= 4 U;( gW3 + ¢'B)?
W;I %(Wj +iW?) o %
Z, QV\‘//;—j;iu s =
A, 9’\232 +ggi’u -




Summary

mass —» =2.3 MeV/c? =1.275 GeV/c? ~173.07 GeV/c? =126 GeV/c?
charge = 2/3 . 213 : 2/3 \ 0
spin - 1/2 1/2 1/2 0
| up | charm | top
=4 8 MeV/c? =95 MeV/c? =4 18 GeV/c?
Q ey @ 113 . /3
g 1/2 | B 1/2 1/2
8 down - strange i ~ bottom b
0.511 MeV/c? 105.7 MeV/c? 1.777 GeV/c? 91.2 GeV/c? \'
-1 ” -1 -1 0
12 | 112 1/2 1 ¥y
=
~electron = muon tau Z boson O
m <2.2 eV/c? <0.17 MeV/c? <15.5 MeV/c? 80.4 GeV/c? ) 8
2 lo P 0 0 y +1 w
E 112 12 1|2 y O
electron muon tau
41 neutrino i . neutrino j . neutrino W boson g




Summary

| L=
mmw
)Ly-rkc
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Summary

color Chiralily ~ hypercharge  weak aospin electric Ccharge B effective coupling to Z boson
o] o o 15 18 |
SPIN Q?gﬁ\(" SU (3)6 x ol (Z’L x U (‘ )y T3L Q= T3I. +Y %Qﬂ- MEANING
& _(¥ -1/2 1/2 o 1/2 doublet under 5U(2),
5 L= (e);. ' ‘ (-'/2 ("/2 (“) (-'/2+Sin’6w) Singlel under SU(3)
Q .
= er | l - 0 | w0, | 8 d“"sdj{a,sum
| _{u 1/6 1/2 2/3 1/2 - ¥4 $int0 doublel under 5U(2),
- /2 Q_(d )l. 3 2 (|/6 (—vz (—0/3) (-|/2+‘/g,sin¢e:) l'rip\el‘ under 50(3)
< :
o o singlet under 5V(2),
é YR 3 | /3 O 2/3 55O triplet under 5U(3)
_ . Va Sind singlet under 5U(2),
dr 3 | /3 O 173 /3 5in"Ow triplel under SU(3)
Up
D _h* 1/2 1/2 i doublet under SU(Z)
\:_E_D O H= h°) l 2- (I/Z (_,/2 (o) X Sin%lei' under 5U(3)‘

[taken from C. Grojean’s lecture slides]




Afterglow Light
Pattern
375,000 yrs.

Inflation

Quantum
Fluctuations

Dark Energy
Accelerated Expansion

Dark Ages Development of
/ Galaxies, Planets, etc.

1st Stars
about 400 million yrs.

Big Bang Expansion
13.77 billion years

Cosmology

Atoms
4.6%

Dark
Matter
24%

TODAY

Dark
Energy
71.4%






