

DETECTORS FOR HIGH ENERGY PHYSICS

Part 2

Ingrid-Maria Gregor DESY/Universität Bonn Summerstudents 2022 08.08.2022

III. CALORIMETERS

VI FIDET, S, C

600

2

CALORIMETRY

CALORIMETRY: THE IDEA BEHIND IT

Calorimetry originated in thermo-dynamics

 The total energy released within a chemical reaction can be measured by measuring the temperature difference

Ice-calorimeter from Antoine Lavoisier's 1789 *Elements of Chemistry*.

• What is the effect of a 1 GeV particle in 1 litre water (at 20°C)?

$$\Delta T = E / (c \cdot M_{water}) = 3.8 \cdot 10^{-14} \text{K}!$$

- In particle physics:
 - Measurement of the energy of a particle by measuring the total absorption

PARTICLE PHYSICS DETECTORS

- There is not one type of detector which provides all measurements we need -> "Onion" concept -> different systems taking care of certain measurement
- Detection of collision production within the detector volume
 - resulting in signals (mostly) due to electro-magnetic interactions

Transverse slice through ATLAS plane

WHY CALORIMETERS ?

Measurement of energy or momentum of particles:

- Focus on high energy particles (hadrons, leptons, (photons))
- Magnetic spectrometer: Momentum of charged particles measured in B-Field by tracking detectors

$$\frac{\sigma_p}{p} \propto \frac{p}{L^2}$$

Problematic: with increasing p (or E) the momentum resolution gets worse (or L huge)

Calorimeters are the solution

What else ?

They work also for neutral particles $!! \ n, \gamma, K^0, \ldots$

WHY CALORIMETERS ?

 Calos are the ideal instrument to measure the full energy of particles, especially at high momentum

$$\frac{\sigma_E}{E} \propto \frac{1}{\sqrt{E}}$$

Resolution improves with the energy !

- Other advantages:
 - Depth of shower grows only with In(E)
 - Calorimeter can cover full solid angle
 - Fast timing signal from calorimeter -> can be used for triggering
 - Distinction of hadronic and electromagnetic showers showers using segmentation in depth

CALORIMETRY: OVERVIEW

- Basic mechanism for calorimetry in particle physics:
 - formation of electromagnetic
 - or hadronic showers.
- The energy is converted into ionisation or excitation of the matter.

Calorimetry is a "destructive" method. The energy and the particle get absorbed!

Charge

- Oetector response ∝E
- Calorimetry works both for charged (e± and hadrons) and neutral particles (n,γ) !

Cerenkov light

Scintillation light

REMINDER

BONN

- Critical energy: the energy at which the losses due to ionisation and Bremsstrahlung are equal
- Radiation length defines the amount of material a particle has to travel through until the energy of an electron is reduced by Bremsstrahlung to 1/e of its original energy $\langle E_e(x) \rangle \propto e^{\frac{x}{X_0}}$

empirical:
$$X_0 = \frac{716.4 A}{Z(1+Z) \ln(287/\sqrt{Z})} \frac{g}{cm^2} \propto \frac{A}{Z^2}$$

Ingrid-Maria Gregor - HEP Detectors - Part 2

- plates.
 - **Cloud chamber photo of** electromagnetic cascade between spaced lead

group Pic: MIT cosmic ray

- High energetic particles: form shower if passing through (enough) matter.
- Alternating sequence of interactions leads to a cascade:
 - Primary γ with E₀ energy produces e+e- pair in layer X₀ thick
 - On average, each has $E_0/2$ energy
 - If $E_0/2 > E_c$, they lose energy by Bremsstrahlung 0

- Next layer X_0 , charged particle energy decreases to $E_0/(2e)$
- Bremsstrahlung with an average energy between $E_0/(2e)$ and $E_0/2$ is radiated
- Radiated vs produce again pairs

Ingrid-Maria Gregor - HEP Detectors - Part 1

BONN

ANALYTIC MODEL OF ELECTROMAGNETIC SHOWER

Simplified model (assuming e^2)

Electromagnetic shower is characterised by

- Number of particles in shower
- Location of shower maximum
- Longitudinal shower distribution
- Transverse shower distribution

• Introduce longitudinal variable $t = x/X_0$

• Number of particles after traversing depth t: $N(t) = 2^t$

• Each particle has energy:
$$E(t) = \frac{E_0}{N(t)} = \frac{E_0}{2^t} \rightarrow t = \ln(E_0/E)/\ln 2$$

Maximum number of particles in shower

$$N_{\rm max} = \exp(t_{\rm max}\ln 2) = \frac{E_0}{E_c}$$

BONN Ingrid-Maria Gregor - HEP Detectors - Part 1

Example: 1 GeV photon in CsI crystal: $E_c \approx 10 \text{ MeV}$ $N_{\text{max}} = E_0/E_c \approx 100$ $t_{\text{max}} \approx 6.6X_0$

EM SHOWER PROPERTIES

- Longitudinal development governed by the radiation length X_{0.}
- Lateral spread due to electron undergoing multiple Coulomb scattering:
 - 95% of the shower cone is located in a cylinder with radius 2 RM
 - Beyond this point, electrons are increasingly affected by multiple scatteri
- Lateral width scales with the Molière radius R_M
 - Important parameter for shower separation

$$R_M = X_0 \frac{E_s}{E_c} = 21.2 MeV * \frac{X_0}{E_c}$$

$$E_S = m_e c^2 \sqrt{4\pi/\alpha} = 21.2 MeV$$

Example: E_0 = 100 GeV in lead glass Ec=11.8 MeV $\rightarrow Nc \approx 13$, $t_{95\%} \approx 23$ $X_0 \approx 2$ cm, RM= 1.8· $X_0 \approx 3.6$ cm

 $\boldsymbol{\mathsf{L}}_{c}$

HADRONIC CASCADE

• Within the calorimeter material a hadronic cascade is build up: in inelastic nuclear processes more hadrons are created

The length scale of the shower is given in means of the nuclear reaction length λ_{I}

Interaction length:

 $\lambda_l = \frac{A}{N_A \sigma_{total}} \qquad \begin{array}{l} \text{Probability th} \\ \text{happens on} \end{array}$

total cross section for nuclear processes

Probability that no hadronic reaction happens on the path x happened:

$$P = e^{-\frac{x}{\lambda_I}}$$

Compare X_0 for high-Z materials, we see that the size needed for hadron calorimeters is large compared to EM calorimeters.

	λı	X ₀
Polystyren	81.7 cm	43.8 cm
PbWO	20.2 cm	0.9 cm
Fe	16.7 cm	1.8 cm
W	9.9 cm	0.35 cm

Ingrid-Maria Gregor - HEP Detectors - Part 2

HADRONIC CASCADE: THE DETAILS

Hadronic showers are way more complicated than em showers.

- Different processes are created by the impinging hadron:
 - high energetic secondary hadrons taking a significant part of the momentum of the primary particle [e.g. O(GeV)]
 - a significant part of the total energy is transferred into nuclear processes: nuclear excitation, spallation, ... Particles in the MeV range
 - neutral pions (1/3 of all pions), decay instantaneously into two photons start of em showers
 - Breaking up of nuclei (binding energy) neutrons, neutrinos, soft γ's, muons
- invisible energy
- -> large energy fluctuations
- -> limited energy resolution

CALORIMETER TYPES

VHOET, S, C

600

CALORIMETER TYPES

Two different types of calorimeters are commonly used: Homogeneous and Sampling Calorimeter

Homogeneous Calorimeter

- The absorber material is active; the overall deposited energy is converted into a detector signal
- Pro: very good energy resolution
- Contra: segmentation difficult, selection of material is limited, difficult to built compact calorimeters

SAMPLING CALORIMETER

Sampling Calorimeter

- A layer structure of passive material and an active detector material; only a fraction of the deposited energy is "registered"
- Pro: Segmentation (transversal and lateral), compact detectors by the usage of dense materials (tungsten, uranium,...)
- **Contra**: Energy resolution is limited by fluctuations

CALORIMETER: IMPORTANT PARAMETER (1)

The relative energy resolution of a calorimeter is parametrised:

$$(\frac{\Delta E}{E})^2 = (\frac{c_s}{\sqrt{E}})^2 + (\frac{c_n}{E})^2 + (c_c)^2$$

- Stochastic term cs
 - the resolution depends on intrinsic shower fluctuations, photoelectron statistics, dead material in front of calo, and sampling fluctuations
- Noise term c_n
 - Electronic noise, radioactivity, i.e. dependent of the energy
- **Constant** term **c**c
 - Energy independent term contributing to the resolution: due to inhomogeneities with in the detector sensitivity, calibration uncertainties and radiation damage

Losses of Resolution:

- Shower not contained in detector → fluctuation of leakage energy; longitudinal losses are worse than transverse leakage.
- **Statistical fluctuations** in number of photoelectrons observed in detector.
- Sampling fluctuations if the counter is layered with inactive absorber.

....

BONN

CALOS: ACTIVE MATERIAL

- Detectors based on registration of excited atoms
- Emission of photons by excited atoms, typically UV to visible light.
 - Observed in noble gases (even liquid !)
 - Polyzyclic Hydrocarbons (Naphtalen, Anthrazen, organic scintillators) -> Most important category.
 - Inorganic Crystals -> Substances with largest light yield. Used for precision measurement of energetic Photons.

- PbWO₄: Fast, dense scintillator,
 - Density ~ 8.3 g/cm³ (!)
 - ρ_M 2.2 cm, X₀ 0.89 cm
 - low light yield: ~ 100 photons / MeV

Active

SCINTILLATORS TO MEASURE THE ENERGY

- An incident photon or particle ionises the medium (on band structure level).
- Ionised electrons slow down causing excitation.
- Excited states immediately emit light.

Inorganic scintillators

- Fluorescence is known in many natural crystals.
 - UV light absorbed
 - Visible light emitted
- Artificial scintillators can be made from many crystals.
 - Doping impurities added
 - Improve visible light emission

	conduction band		
hv	impurity excited states		
	impurity ground state		
	valence band		

Advantages:

- Good efficiency
- Good linearity
- Radiation tolerance

Disadvantage:

- Relatively slow
- Crystal structure needed (small and expensive)

SCINTILLATORS TO MEASURE THE ENERGY

Very common: Measurement of the deposited energy using scintillation

Organic scintillators

source: Wikipedia

Ingrid-Maria Gregor - HEP Detectors - Part 2

- Organic scintillators are aromatic hydrocarbon compounds (containing benzene ring compounds)
- The scintillation mechanism is due to the transition of electrons between molecular orbitals
 - organic scintillators are fast ~ few ns.
- Excited states radiate photons in the visible and UV spectra.
 - Fluorescence is the fast component
 - Phosphorescence is the slow component

Advantages: - very fast Disadvantage: - inefficient - non-linear - not good for

- not good for photons

Active

material

LIGHT TRANSPORT

- The photons are being reflected towards the end of the scintillator
- A light guide brings the light to a Photomultiplier

DETECTING THE LIGHT

- The classic method to detect photons are photomultipliers
 - Conversion of a photon into electrons via photo-electric effect when the photon impinges on the photo cathode
 - The following dynode system is used to amplify the electron signal
 - Usable for a large range of wave lengths (UV to IR)
 - good efficiencies, single photon detection possible
 - Iarge active area possible (SuperKamiokande O 46cm)

BONN

EXAMPLES

VI HWET, S, C

600

EXAMPLE: ZEUS CALO

A rather hostile environment in ZEUS at HERA

- bunch crossing every 96ns
- high beam gas rate
- very energetic particles produced

Requirements for the ZEUS calorimeter:

- hermeticity
- dead time free readout
- time resolution in nanosecond range
- uniform response
- radiation tolerance (15 years of running)
- electron-hadron separation
- good position resolution
- good electron and jet energy resolution

THE ZEUS CALORIMETER - SOLUTION

highly-segmented, uranium scintillator sandwich calorimeter read out with photomultiplier tubes (PMTs)

Uranium + Scintillator:

- compensation
- high Z material -> more compact size of calorimeter
- natural radioactivity provides means of calibration

- Very hermetic: covering up to η <4.2 in the forward direction and η <-3.8 in the rear direction.
- Readout by 12,000 phototubes (PMTs)

Ingrid-Maria Gregor - HEP Detectors - Part 2

- Choice of active and passive thicknesses -> compensation (e/h = 1.0
- Uniformity in structure + natural radioactivity -> good calibration
- F/B/RCAL with ~6000 cells
 - EM cell size: 5x20 (10x20) cm2 in F/BCAL (RCAL)
 - HA cell size: 20x20 cm2
 - Cell read out on both sides with wavelength shifters
 - redundancy
 - transverse position measurement within the cell

total of 80 modules

TEST BEAM AT CERN

Electrons:

Hadrons:

UN

BONN

 $\underline{\sigma}(E)$

E

 $\sigma(E)$

Ingrid-Maria Gregor - HEP Detectors - Part 2

18%

 $\sqrt{E(GeV)}$

35%

 Operation characteristics were determined in test beams at CERN (prototype detector)

Production modules were all calibrated at CERN

CALIBRATION METHODS

- Natural uranium activity provides absolute energy calibration in situ!
 - 98.1% U238 + 1.7% Nb + 0.2% U235
 - Half-Life of U238 is 4.5 *109 years
- Detectable uranium induced signal current
- Uranium noise signal
 - ~ 2MHz (EM Calo)
 - ~10MHz (Hadronic Calo)
 - with Uranium noise calibration can be tracked very easy

Channels out of range -> declared as "bad" until readjusted

HARDWARE PERFORMANCE

- At the time of the shutdown (30.06.2007):
 - only ~ 2% bad channels (one side) and only 2 holes (both sides failed) -> 0.3 per mille
- In general very stable and robust system
 - Front End Cards:
 - About 1000 necessary for the running, ~10% spares
 - Main failure mode: buffer or pipeline chip (socketed)
 - Cards easy to debug and maintain
 - Failure rate: <1/month (12 channels one side)</p>
 - Very successful

BONN Ingrid-Maria Gregor - HEP Detectors - Part 2

- Number of bad channels versus run number (over years)
- "Bad channels" are excluded from data taking -> reducing the calo performance in that area
- Read out from both sides -> bad channel is not complete loss of information
- Ups and downs visible in bad channel behaviour over the years

OVERVIEW OF CALORIMETERS Tile extended barrel ATLAS Tile barrel In order to maximise the sensitivity for $H \rightarrow \gamma \gamma$ decays, the experiments need to have LAr hadronic an excellent e/ γ identification and resolution end-cap (HEC) LAr electromagnetic end-cap (EMEC) **CMS** CMS DETECTOR STEEL RETURN YOKE Total weight : 14,000 tonnes 12,500 tonnes SILICON TRACKERS Overall diameter : 15.0 m Pixel (100x150 µm) ~16m2 ~66M channels Microstrips (80x180 µm) ~200m² ~9.6M channels Overall length : 28.7 m Magnetic field : 3.8 T SUPERCONDUCTING SOLENOID Niobium titanium coil carrying ~18,000A MUON CHAMBERS Barrel: 250 Drift Tube, 480 Resistive Plate Chambers Endcaps: 468 Cathode Strip, 432 Resistive Plate Chambers LAr electromagnetic barrel LAr forward (FCal) PRESHOWER Silicon strips ~16m2 ~137,000 channels FORWARD CALORIMETER Steel + Quartz fibres ~2,000 Channels CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL) ~76,000 scintillating PbWO4 crystals HADRON CALORIMETER (HCAL) + Plastic scintillator ~7,000 channels Brass UN BONN

Ingrid-Maria Gregor - HEP Detectors - Part 2

CMS CALORIMETER

- ECAL: homogeneous calo
 - high resolution Lead Tungsten crystal calorimeter -> higher intrinsic resolution
 - 80000 crystals each read out by a photodetector
 - constraints of magnet -> HCAL absorption length not sufficient
 - tail catcher added outside of yoke
- HCAL: sampling calo
 - 36 barrel "wedges", each weighing 26 tonnes
 - brass or steel absorber
 - plastic scintillators
 - read out by hybrid photodetectors

CMS Lead tungsten crystals, each 1.5kg (CERN)

CMS ECAL during installation (CERN)

ATLAS CALORIMETER

- ECAL + HCAL: sampling calo
 - Liquid argon LAr calorimeter > high granularity and longitudinally segmentation (better e/ ID)
 - Electrical signals, high stability in calibration & radiation resistant (gas can be replaced)
 - Solenoid in front of ECAL -> a lot of material reducing energy resolution
 - Accordion structure chosen to ensure azimuthal uniformity (no cracks)
 - Liquid argon chosen for radiation hardness and speed
 - Tile calorimeter: covering outer region
 - "Conventional" steel absorber with plastic scintillators.

CURRENT HADRON CALOS ... AND DREAMS

- Tower-wise readout: light from many layers of plastic scintillators is collected in one photon detector (typically PMT) O(10k) channels for full detectors
- Extreme granularity to see shower substructure: small detector cells with individual readout for Particle Flow O(10M) channels for full detectors

PARTICLE FLOW CALORIMETER

- Attempt to measure the energy/momentum of each particle with the detector subsystem providing the best resolution
- Used in three main contexts:
 - "Energy flow" -> Use tracks to correct jet energies
 - "Particle flow/Full event reconstruction" e.g. CMS
 -> Aim to reconstruct particles not just energy deposits
 - "High granularity particle flow" e.g. ILC
 - -> Technique applied to detector concept optimised for particle flow

Need

- a calorimeter optimised for photons: separation into ECAL + HCAL
- to place the calorimeters inside the coil (to preserve resolution)
- to minimise the lateral size of showers with dense structures
- the highest possible segmentation of the readout
- to minimise thickness of the active layer and the depth of the HCAL

PARTICLE FLOW PARADIGM

- Reconstruct every particle in the event
- Up to ~100 GeV Tracker is superior to calorimeter
 - use tracker to reconstruct $e^{\pm}, \mu^{\pm}, h^{\pm}$ (<65%> of E_{iet}
 - use **ECAL** for γ reconstruction (<25%>)
 - use (ECAL+) HCAL for h^o reconstruction (<10%>)
- HCAL E resolution still dominates E_{jet} resolution
- But much improved resolution (only 10% of E_{jet} in HCAL)

+ Sophisticated reconstruction software

THE ZOO OF PFLOW CALORIMETERS

21/10/2011 Ingrid-Maria Gregor - HEP Detectors - Part 2 erika.garutti@desy.de

NEW CONCEPTS: HIGHLY GRANULAR CALOS

- CALICE (CAlorimeter for a Linear Collider Experiment) HCAL prototype: \bigcirc
 - highly granular readout: 3 x 3 cm² scintillator tiles, 38 layers (~4.7 λ_{int}), ۲ each tile with individual SiPM readout

scintillator tile with WLS fiber

Silicon photo-multiplier

Pictures: CALICE collaboration

Ingrid-Maria Gregor - HEP Detectors - Part 2

CALOS: NOT ONLY AT ACCELERATORS!

The methods used in particle physics are more and more used in astro particle physics.

Requirements are different

- Search for extremely rare reactions
 - Large areas and volumina have to be covered
 - Background needs to be well suppressed
 - ► High efficiency: no event can be lost!
 - Data rate, radiation damage etc. are less of a problem

Flux of cosmic ray particles as a function of their energy.

AIR SHOWER

- Mainly electromagnetic: photons, electrons
- Shower maximum:

 $\sim \ln(E_0/A)$

Use atmosphere as calorimeter Nuclear reaction length $\lambda_l \sim 90$ g/cm² Radiation length X₀ ~ 36.6 g/cm² Density: ~ 1035 g/cm² ~ 11 λ_l , ~ 28 X₀

R.Engel, ISAPP2005

TWO TECHNIQUES

- The atmosphere as homogeneous calorimeter:
 - Energy measurement by measuring the fluorescence light

This is only possible with clear skies and darkness !

- A one-layer sampling calorimeter 11
 λ absorber
 - Energy measurement using particle multiplicity

Always possible but has large uncertainties !

AUGER-SOUTH: ARGENTINIAN PAMPA

- 1600 water-Cherenkov detectors on ground
- 4 Flourorescence-stations with 6 telescopes
- Covered area:
 3000 km² (30 x Paris)
- Designed to measure energies above 10¹⁸eV

AUGER-DETEKTOR: GROUND ARRAY

AUGER HYBRID INSTALLATION

SUMMARY CALORIMETERS

Calorimeters can be classified into:

Electromagnetic Calorimeters,

to measure electrons and photons through their EM interactions.

Hadron Calorimeters,

Used to measure hadrons through their strong and EM interactions.

The construction can be classified into:

Homogeneous Calorimeters,

that are built of only one type of material that performs both tasks, energy degradation and signal generation.

Sampling Calorimeters,

that consist of alternating layers of an absorber, a dense material used to degrade the energy of the incident particle, and an active medium that provides the detectable signal.

CALORIMETERS AT LHC

All LHC experiments have a calorimetric system with at least an electromagnetic and a hadronic part

Overview EM calorimeters at LHC

	Calorimeter	Material	Number of channels		Angular coverage	Energy resolution	
						c_s (%)	c_{c} (%)
ATLAS	EM barrel	LAr + Pb	109,568		$ \eta < 1.475$	10	0.7
	EM end-cap	LAr + Pb	63,744	sampling	$1.375 < \eta < 3.2$	10	0.7
	FCal	LAr + Cu	2016	sam	$3.1 < \eta < 4.9$	28.5	3.5
CMS	ECAL barrel	PbWO ₄	61,200		$ \eta < 1.479$	2.8	0.3
	ECAL end-cap	PbWO ₄ homog	14,648 eneous		$1.479 < \eta < 3.0$	2.8	0.3
LHCb	ECAL	Scint. + <i>Pb</i>	6016	sampling	$\begin{array}{l} 0.756 < \\ \eta_x < 2.19 \\ \hline 1.037 < \\ \eta_y < 2.19 \end{array}$	9	0.8
ALICE	PHOS	PbWO ₄	17,920	sampling	$ \eta < 0.12,$ $220^{\circ} < \phi < 320^{\circ}$	3.3	1.1
UNI	EMCal	Scint. + Pb	12,672	sam	$ \eta < 0.7,$ $80^{\circ} < \phi <$ 187°	10	2

As expected, the sampling based on lead as absorber have a slightly worse resolution than the homogeneous crystal calorimeters.

BONN Ingrid-Maria Gregor - HEP Detectors - Part 2

HADRONIC CALOS AT LHC

	Calorimeter	Material	Number of	Angular coverage	Energy resolution		All sampling calorimeter
			channels		c_{s} (%)	c_{c} (%)	_
ATLAS	Tile	Scint. + <i>Pb</i>	9852	$ \eta < 1.7$	52	3	-
	HEC	LAr + Cu	5632	$1.5 < \eta < 3.2$	84	_	_
	FCal	LAr + W	1508	$3.1 < \eta < 4.9$	94	7.5	_
CMS	HB	Scint. + steel/brass	2592	$ \eta < 1.3$	90	9	_
	HE	Scint. + steel/brass	2592	$1.3 < \eta < 3$	90	9	_
	НО	Scint. + steel	2160	$ \eta < 1.4$	-	_	_
	HF	Quartz fibre + steel	1728	$3 < \eta < 5.2$	120	_	0.25
LHCb	HCAL	Scint. + steel	1488	$ \eta_x < 1.87$	69	9	Hadronic calorimeter systems at the LHC
				$ \eta_y < 2.07$			C. Lippmann - 2010

STATE OF THE ART OF PARTICLE FLOW ALGORITHM

0