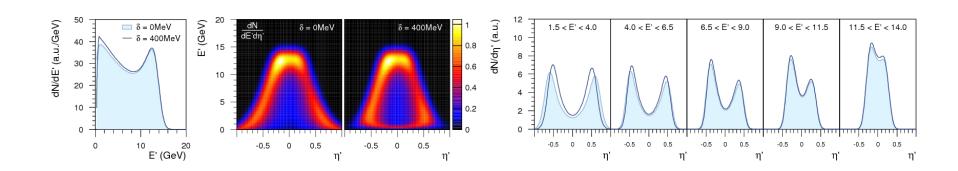

Status of TPOL Reanalysis

- Brief Reminder of Analysis Strategy
 - Some Results with HERA II Data
 - Open Questions

Ties Behnke, Blanka Sobloher PRC pre-meeting, 11th October 2010

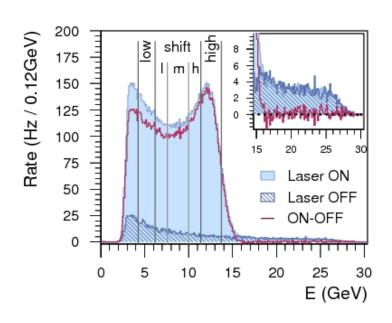
TPOL Analysis Chain

Reanalysis of TPOL Data - Strategy

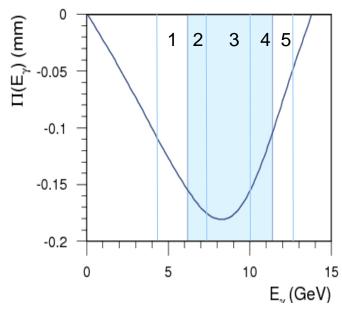

- Use parametrized Monte Carlo (MC) to derive Analysing Power taking into account
 - Linear light polarization from light polarization measurement
 - Electron/positron beam spot size at the calorimeter surface
 - Interaction point (IP) distance
- Take light polarization as input parameter, while beam spot size and IP distance are regarded as free parameters
 - Generate MC on a regular grid of beam spot size and IP distance
 - Use proper interpolation techniques to derive continuous MC predictions
 - For each minute of polarization data fit data distribution widths to find a suitable set of beam parameters in MC mapping functions and read off corresponding Analysing Power
- Why parametrized Monte Carlo?
 - For a sub-1% statistical precision on the Analysing Power for a given set of beam parameters ~100M events are needed
 - Full simulation with GEANT3 ist far too slow
 - → Detector description should reproduce measurements as good as possible
 - Current GEANT3 setup in best tuning state does not reproduce the energy asymmetry functions as functions of the vertical and horizontal impact points y and x, η_v(y) being a major ingredient to the Analysing Power

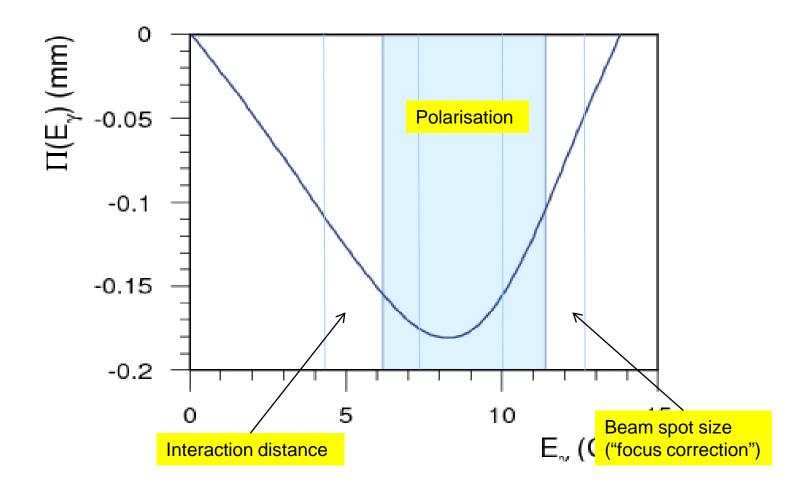
Parametrized Monte Carlo - Ingredients

- Beam line
 - Using HERA optics parameters and magnetic bends to simulate the electron beam
 - Full gaussian beam optic to simulate the laser beam
 - Full 3D interaction probability between electron and laser beam to generate vertex region
- Compton cross section taking both linear and circular light polarization into account
- 66m distance nominal IP to calorimeter surface with apertures
 - As known from measurements taken in tunnel
- Detector simulation
 - Average total and differential response for converted photons both in x and y, both UP-DOWN and LEFT-RIGHT channel pairs
 - Measured from Silicon-calorimeter data
 - Total energy resolution at the Compton edge
 - Measured from Silicon-calorimeter data
 - Difference in average total response of converted to nonconverted photons
 - Measured at Compton edges in Silicon-calorimeter data
 - Difference of differential response of converted to nonconverted photons
 - ightharpoonup Predicted by detailed physical model of $\eta_{\nu}(y)$ used in its fit for converted photons and confirmed by GEANT simulations
 - Non-linearity of energy measurement UP-DOWN channels
 - From GEANT studies
 - Detailed energy resolution model and energy resolution correlation model for UP-DOWN channels
 - From GEANT studies
 - Digitization of calorimeter channel energy readings
 - Physical modelling and tuned to data


Energy Scale and Offset

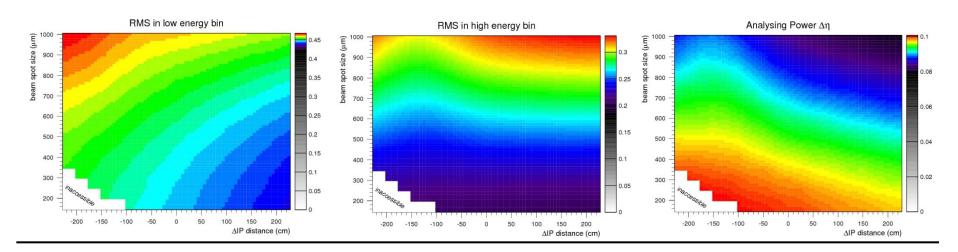
- A constant energy contribution added to each energy measurement
 - E.g. as generated by synchrotron radiation originating in the quadrupole
 - Would add a bunch-on-time energy contribution to each high-energy photon detected
 - Causes effectively a shift of the pedestal values, which cannot be accounted for by the online pedestal subtraction
 - With a sampling fraction of 0.02, 5MeV of synchrotron radiation corresponds to a 200MeV energy contribution
 - → Reduces effectively RMS and shift of means values
- Effect of pedestal shift can be parametrized **linearly** (from MC studies)
- Extend existing maps (for ped=0MeV) by maps with ped=300MeV and ped=600MeV and interpolate between the three maps using regression methods
 - I.e. a total of 3x19x19 MC points...
 - → 3D mapping functions for RMS and shift of means in all energy bins with IP distance, beam spot size and pedestal shift as free parameters




Photon Energy Dependence

- Analysis done in 6 photon energy bins
 - → Calculate analysing power per energy bin
 - → Maximise information
 - → Allows cross check / consistency checks
- Eta distribution
 - → Tails of distributions show (strong) correlations
 - Background subtraction, large stat errors
 - → Remove outliers, cut away tails of distributions
 - Optimized using MC and data background fluctuation samples from laser OFF samples

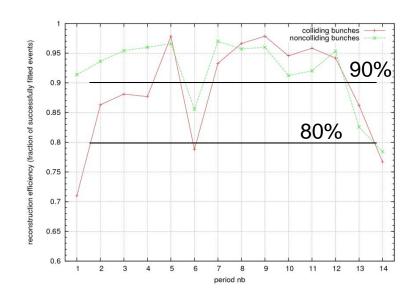
Analysing power



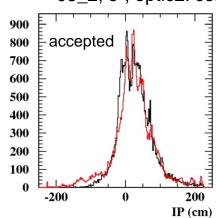
Areas of largest sensitivities

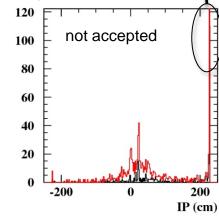
Monte Carlo Maps

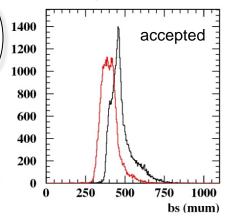
- Generated 19x19 points in [IP, bs], $S_3 = 1$ and $S_1 = 1$, 100M events each set
 - → Spans complete available range in IP (allowed by apertures) and beam spot size (allowed by emittance)
- For a given linear light polarization measurement mix eta distributions for S₁ and S₃ to get the corresponding linear light polarization in each helicity
- Calculate RMS and mean values in energy-eta-bins, average RMS over two helicity, get shift of means as difference between helicities
 - → RMS and shift of means maps take linear light polarization into account
- Smooth maps using iterated 2D Savitzky-Golay filtering and cubic splines smoothing along IP distance
 - → Get rid of remaining statistical fluctuations of points
- Interpolate maps using 2D B-splines interpolants
 - → Smooth and continuous RMS and shift of means mapping functions for each energy bin

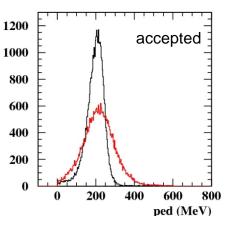

HERA II Data Periods

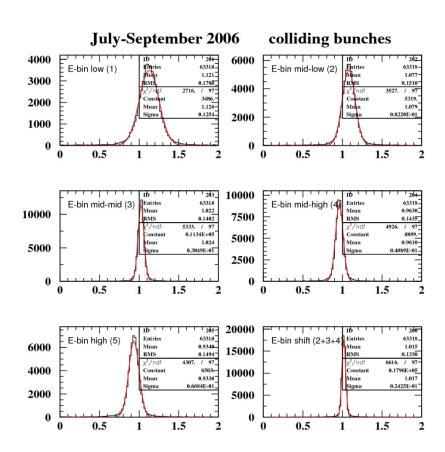
- Divide complete HERA II data into 14 periods
 - → Distinguished by different HERA optics setups, e+/e- changes, HE, LE or ME proton energies and covering not more than ~3 months


Period	Date	Optic	Beam	Fills
1	Feb.+OctDec. 2003	1: helum72_03	e+	3171-3267
2	JanApr. 2004	1	e+	3268-3416
3	May-Aug. 2004	1	e+	3417-3551
4	Dec. 2004 – Mar. 2005	2: helume04	e-	3556-3687
5	MarMay 2005	2	e-	3689-3804
6	May-June 2005	3: helume05	e-	3805-3873
7	JulSept. 2005	2	e-	3873-4007
8	SeptNov. 2005	2	e-	4008-4128
9	FebJune 2006	4: helumsx_06	e-	4139-4376
10	July-Sept. 2006	5: holumm0_06	e+	4377-4515
11	OctDec. 2006	5	e+	4516-4698
12	JanMar. 2007	5	e+	4700-4857
13	MarMay 2007	6: holum602_07	e+, LE	4858-5015
14	June 2007	7: holum6bs_07	e+, ME	5018-5064

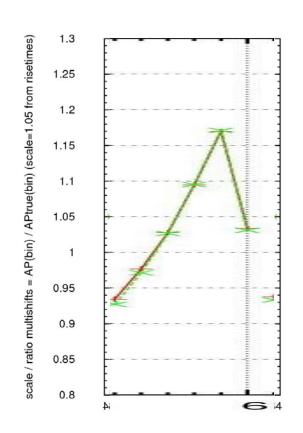

Analysing Data - Interaction Distance


- Fit works and is stable
- Observed problem: around 5% of fits fail (in some periods many more)
- Problem traced to IP distance, which is reconstructed into unphysical regime
- Example of fitted beam parameters IP distance, beam spot size (bs) and pedestal shift (ped): period 5

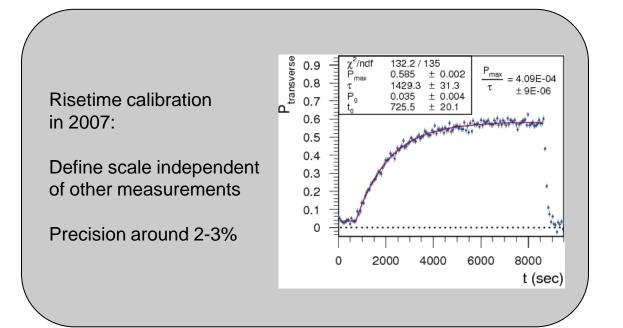




- Calculate Polarisation in each of the 5 energy bins, using simultaneous optimisation with IP and Beamspot
- Polarisation should not depend on energy of bin, error will change
- Determine the ratio R of the observed AP to the predicted AP (normalise data to Polarisation)

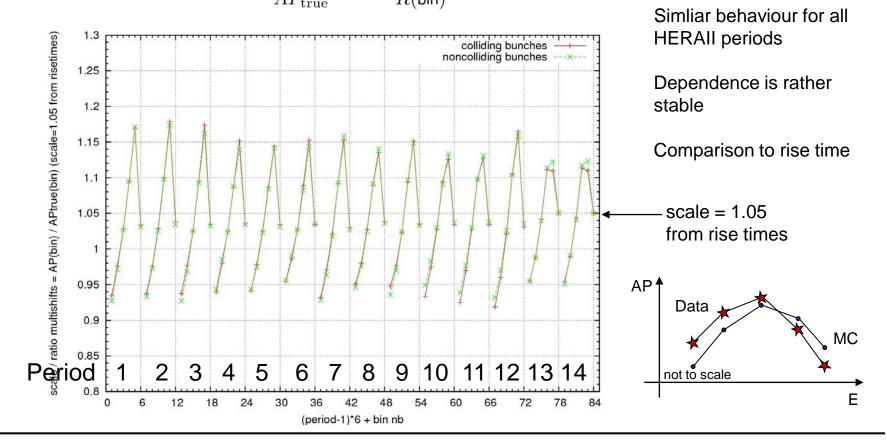

$$R(\mathrm{bin}) := \frac{\mathrm{shift\ in\ data(bin)}}{\mathrm{AP}_{\mathrm{MC}}(\mathrm{bin}) \cdot P}$$

→ In each energy bin and for each minute of polarisation measurement


Energy Dependence of Analysing Power

$$\begin{split} R(\mathrm{bin}) &= \frac{\mathrm{shift}\,\mathrm{in}\,\mathrm{data}(\mathrm{bin})}{\mathrm{AP}_{\mathrm{MC}}(\mathrm{bin})\cdot P} = \frac{\mathrm{AP}_{\mathrm{true}}(\mathrm{bin})\cdot P_{\mathrm{true}}}{\mathrm{AP}_{\mathrm{MC}}(\mathrm{bin})\cdot P_{\mathrm{true}}\cdot \mathrm{scale}} \\ &\Rightarrow \frac{AP_{\mathrm{MC}}}{AP_{\mathrm{true}}}(\mathrm{bin}) = \frac{\mathrm{scale}}{R(\mathrm{bin})} \end{split}$$

Reconstructed AP appears to be depend strongly on E


- Too low at low energies
- Too high at high energy
- overall 5% offset compared to external scale (rise time)

Analysing Data for all of HERA II running

 Given an absolute polarization scale, the ratio can be calculated into a ratio of MC Analysing Power to ,true' Analysing Power:

$$\begin{split} R(\mathrm{bin}) &= \frac{\mathrm{shift\ in\ data(bin)}}{\mathrm{AP_{MC}(bin)} \cdot P} = \frac{\mathrm{AP_{true}(bin)} \cdot P_{true}}{\mathrm{AP_{MC}(bin)} \cdot P_{true} \cdot \mathrm{scale}} \\ &\Rightarrow \frac{AP_{\mathrm{MC}}}{AP_{true}}(\mathrm{bin}) = \frac{\mathrm{scale}}{R(\mathrm{bin})} \end{split}$$

Systematic Studies

Performed systematic studies using MC

Beamline

- ➤ Laser: size of waist and at mirror + position of waist
- Horizontal emittance and its coupling to vertical emittance (beam spot size)
- Horizontal table position
- Vertical table position w and w/o gain difference calibration (centering)
- Different optics setups

Generator

- Spread of Compton scattering angles w and w/o energy dependence
- Laser photon energy
- Spread of the final photon distribution (i.e. beamline+Compton)
- > IP distance outside acceptance

Detector

- Photomultiplier gain difference w and w/o table centering
- Absolute gain calibration
- \triangleright Energy resolution correlations ρ_{UD} , ρ_{En} and both
- Energy resolution: statistical term a, constant term b and both
- Energy linearity
- \triangleright Spread of impact points y, i.e. change of $\eta(y)$ and E(y), w and w/o E dependence
- Free distortion of $\eta(y)$ with mirrored-Moyal-like function (an antisymmetric wiggle...)
- \blacktriangleright Distortion of $\eta(y)$ by changing shower parameters: lengths of core and halo and their energy fraction
- \triangleright Crosstalk in cables (mix channel energies à la $E_1=E_1+f^*(E_2)^{\alpha}$) with $\alpha=1, 2, 0.5$
 - Note: pedestal shift corresponds to α =0

Systematic Errors (preliminary)

Error	Size	Comment	
Background subtraction	0.001		
Electronic noise	<0.001	Small, not final	
Linear light polarisation	0.001		
Table/ Calo centering	0.002		
Calo Gain calibration	0.005		
HERA / laser IP			
Laser beam	0.002		
HERA emittance	<0.001	Small	
HERA energy		Small	
HERA optics	0.006		
Method			
IP distance	0.005	Estimate	
Focus correction	0.007	Estimate	5 U
Intrinsic method	0.005		Preliminary final error (intrinsic error, ignoring
Detector Model			the scale and energy problem)
Energy resolution	0.004		4.00/
Correlations	0.010		1.8%
Calo linearity	0.002		
Eta-y from Silicon		Small, not ready	

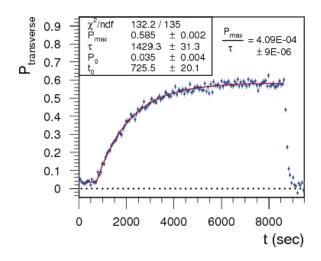
Summary

- Analysis chain for TPOL has been established
- All HERAII data have been processed and analysed
- Preliminary list of systematic errors is available
- Problems
 - → Energy dependence of analysing power different between data and MC
 - → Offset in analysing power relative to rise time curve exists

Where does the Energy Dependence come from?

- Performed systematic studies concerning
 - Measurement of $\eta(y)$ again, this time with the questions:
 - \triangleright Is $\eta(y)$ possibly energy dependent?
 - Fitted silicon data in different, smaller energy bins No!
 - \triangleright Is the $\eta(y)$ measurement biased?
 - Fitted η(y) from MC table scan using the same analysis machinery No biases!
 - \triangleright Has the $\eta(y)$ changed over time, e.g. due to radiation damage?
 - Compared $\eta(y)$ from table scan June 2007 with table scan August 2005 No differences in $\eta(y)$ observed!
 - ➤ Does GEANT also show such an energy dependence? Yes, even worse!

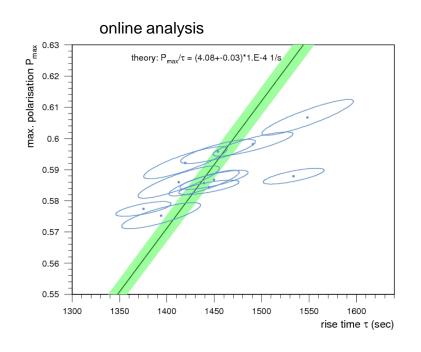
Where does the Energy Dependence come from?

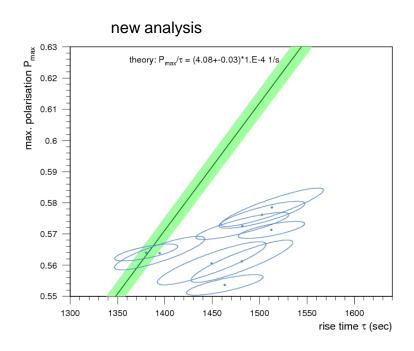

- Short summary: the complete system with the analysis based on MC maps is very stable, systematic variations of input parameters cause only small deviations in resulting Analysing Power after reconstruction
 - → Nice for systematics, bad when searching for something...
 - → Table of preliminary systematics soon...
- It is very hard to find something at all, which can provide some kind of an energy dependent AP change or change the shift bin AP significantly (i.e. reduce it)
 - → Have either a reconstruction or change the AP energy dependence, but not both!
- Best candidates: everything that distorts η(y)
 - \rightarrow But no hints of biases, energy dependent $\eta(y)$ silicon data
 - → Amount of pedestal shift and/or cross talk does change the energy depence
 - \rightarrow But: from the measured $\eta(y)$ a pedestal shift and linear cross talk should be visible in the tails of the function -> tails should not go to 1 in their presence!
 - Found in table scan June 2007 a pedestal shifts of ~20MeV and no cross talk
 - ➤ The fitted pedestal shift in data is ~200MeV for the corresponding period
 - Pedestal shift in our sense must be some kind of a virtual parameter, fixing some things, but does not make distributions entirely correct

Analysing Power Scale - Rise Time Measurements 2007

- In June 2007 a series of rise time measurements have been performed to provide for the possibility to check the absolute scale of the polarimeters
 - TPOL and Cavity were operational
 - 11 rise times are available of different ,quality'
- Fit rise times with function

$$P(t) = \begin{cases} P_0 + (P_{\max} - P_0) \cdot (1 - e^{-(t - t_0)/\tau}) & \text{if } t \ge t_0 \\ P_0 & \text{otherwise} \end{cases}$$


- ightarrow 4 free parameters: starting and maximal polarisation P_0 and P_{max} , beginning of rise time t_0 and rise time τ
- For each rise time curve fit all possible reasonable time ranges [t_{start},t_{end}]
 - As fit results vary with the set of measurements taken into account
 - Determine average fit parameters and their average errors
- Communicated HERA ratio as used by the Cavity (JINST 5 P06005 (2010), arXiv:1005.2741v1):



$$\frac{P_{\text{max}}}{\tau} = (4.08 \pm 0.03) \cdot 10^{-4} 1/s$$

Analysing Power Scale - Rise Time Measurements 2007

- At least during the time of the rise times, end of June 2007, the online Analysing Power scale seems to be good
 - Average scaling factor 1.0033 +- 0.0088
 - → Online AP is by construction good, it has been tuned to rise times
- New polarization scale disagrees
 - Average scaling factor: 1.0504 +- 0.0089
 - → New analysing power (3d fit) is about 5% too high
 - → Need to understand this!

