Options for New Experiments and Facilities at DESY

E. Elsen (DESY) & A. Schöning (U Heidelberg)

Z-factory Improved ep/eA collider HERA use of intense electron (and photon) beams

with input from Ideenmarkt at DESY in June http://beschleuniger-ideenmarkt.desy.de/ next meeting 23.-24.11.2010 at DESY

DESY committed to Energy Frontier

- engaging at the LHC
 - luminosity steadily improving
 - discoveries could be around the corner
 - LHC improvements/upgrades steadily extend the reach
- engaging for Linear Collider
 - ILC solidly prepared and soon ready for acceptance (0.1–1 TeV cms)
 - CLIC is under intense R&D and may eventually extend the energy window to 3 TeV
- However, if no new project directly targeting the energy frontier were approved one should explore facilities that do so indirectly. Typically these are *Factories*.

DESY Assets

- HERA tunnel & most of the machine components
- Expertise in operating large facilities
 - Focus on electron and photon facilities
 - Expertise in Applications of Superconductors
 - Magnets
 - Cavities
- Expertise in construction of large detectors

Resuming HERA physics addressing earlier weaknesses

- low x region largely unexplored
 - gluon density
 - current PDFs come with known deficiencies
 - saturation
- (hard) diffraction
 - theoretically much better understood
 - solid theory in the QCD framework
- QCD tests in eA scattering
 - $g(x) \sim A^{1/3}$

Requirements for ep/eA

- High Luminosity requires
 - shorter dipoles in electron ring
 - Cooled protons à la Fermilab
 - requires an extra ring to achieve ε=1 nm
- New detector with vastly extended forward/backward coverage

rebuilt of e-ring and injection paths

Intense Proton Beams?

- Fermilab will soon have protons in abundance
- CERN is discussing SPL
- PSI has most intense p-beam;
 ESS will eventually have intense proton beams
- DESY III has been dismantled
 - HERA proton energy ramp is slow, O(mins)
 - Nowadays competitive intense proton beams only from superconducting accelerators for which the 1.3 GHz cavities are only a compromise
 - Proton linac at DESY (still) available

Intense protons not a wise scientific extension at DESY

e+e- Factories

- Super-t/charm factory
 - Extreme luminosity
 - little reuse of existing infrastructure
- B-Factory
 - BELLE II will get high luminosity
 - Super-B discussed in Italy
 - could use HERA tunnel
- Z-Factory
 - HERA ~1/5 size of LEP

technically extremely difficult

feasible but not considered because of other ongoing efforts

Case for Z-Factory

- New physics may be hidden in virtual corrections; requires
 - Precision
 - Polarisation
- At the current level of LEP/SLC the two most sensitive measurements show tension:
 - $sin^2\theta_{eff}(A_{LR}) = 0.23098 \pm 0.00026$
 - $sin^2\theta_{eff}(A_{FB}^b) = 0.23221 \pm 0.00029$
- Theoretical uncertainty ±0.00005 can be improved

Polarísation mandatory

Illustration of Role of e⁺ Polarisation

- For fixed e⁻ Polarisation of 90% in both helicities
 - and a required precision of $\Delta sin^2 \theta_{eff} = 3 \times 10^{-5}$
 - with no e+ polarisation 9×10^8 events yield $\Delta sin^2 \theta_{eff} = 1 \times 10^{-4}$

e + Polarisation helps quickly

Many Physics Options at a Z-Factory

• QCD

Measurements of $\alpha_s = 0.1176(20) \pm 0.0017$ (PDG 2009)

- Event shape variables
- Progress in higher order calculations

Hígh precísíon detectors

- SCET reduce hadronisation uncertainties
- Γ_I measurement requires luminosity and scan over Z-resonance
- Z-Factory is also a B- and a τ-Factory
 - Clean environment, τ-polarisation measurement
 - Progress in detector technology enables precise measurements

Full programme needs further elaboration

Z-factory in HERA tunnel – Ring-Ring Option

- HERA magnets are suitable for 50 GeV beams
 - Synchrotron radiation excessive
 - ΔE /turn > 0.5 GeV lost into pipe and magnets
 - Imposes a current limitation
 - Luminosity limited to LEP I values of 2×10³¹ cm⁻²s⁻¹
- Polarisation very small if at all: radiation induced energy spread too close to depolarising resonances

not sufficient

Z-Factory in HERA – Linac-Ring Option

- Positrons are difficult to obtain in large numbers
 - Store polarised positrons at 27.5 GeV in HERA
- Electrons can be readily obtained from a polarised source
 - Accelerate polarised electrons in a superconducting linac to 75 GeV
- Collide asymmetric particle beams
 - abandon electrons (disruption too large)
 - preserve positrons after collision
- $L > 2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
- $P(e^{-}) = 90\%$; $P(e^{+}) > 50\%$

will exceed LEP luminosity by an order of magnitude and meet polarisation and energy resolution requirements

Linac-Ring Luminosity

Linac energy	75.5	GeV			
Linac beam power	20	MW	D.Pitzl, B.Paschen et al.		
Linac current	0.26	mA			
bunch charge	2.7	nC			
Linac bunches	99963	/s	cross section	30	nb
Linac duty cycle	0.05				
bunch rate	2.0	MHz	Ring	42	bunches
Ring energy	27.54	GeV	Polarization	50	%
Ring current	50	mA	Ring	1.56E+11	e/bunch
e+ eps x	3.4	nm rad			
e+ eps y	0.17	nm rad	coupling	0.05	
beta* x	3.0	cm	beam width	10.1	um
beta* y	0.45	cm	beam height	0.87	um
Lumi	2.33E+32	/cm ² /s	tune shift	0.070	
Z	45	M/year	year*eff	75	days

Z-Factory using Linac-Linac Option

- This is essentially 1/5 of the ILC energy including
 - Intense positron source
 - Damping rings for both beams
 - Sophisticated beam delivery section

This machine is effectively the precursor of the ILC

 $\sim 40 \ cm$

target + shield

e⁻

- DESY
- FLASH / FLASH II
- XFEL
- Photons from FELs or dedicated lasers

Such endeavours will always be adequately supported

Electron Experiments

- Beam Dump experiment à la HIPS
- Experiments for high density QED
- Plasma experiments for novel accelerators techniques
 - Short pulses for beam injection experiments

Vítal ínterest of HEP; díscussion on realisation in progress

Summary

- DESY dedicated to High Energy Frontier
 - LHC
 - ILC
- **Z-Factory** in ring-linac mode would enable **indirect searches** in the TeV region using high precision experiments
- an upgraded HERA machine with dedicated large η detectors would pin down low-x QCD and diffraction. Theoretical understanding has much advanced
- There are opportunities for (intense) **electron beam** experiments at DESY. The requirements have to be agreed upon with the respective main users.
 - HIPS etc.
 - Plasma experiments for accelerator development

Comment on lifetime of HERA tunnel

- Maintenance and preservation of infrastructure of the HERA tunnel is expensive
 - not really attractive as a light source
 - emittance not superior to that of PETRA
 - restrictions in underground experimental halls
 - HEP use cases have not really been put forward recently

- Z-Factory
 ep / eA collider
 presented today
- Eventually the tunnel will have to be sand-filled again (safety hazard)

The opportunity of using a >6 km ring "for free" will not exist forever