Universität Hamburg

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

A fast timing tracking layer for test beam instrumentation

High-D Consortium Meeting September 2, 2022

Annika Vauth

The need for new timing detectors

Experimental environments in HEP are evolving \rightarrow Include track timing to address new challenging conditions

Time information complements spatial information:

- "4D" tracking: timing at each point along the track
- Timing layer: timing in event reconstruction

Example

DER FORSCHUNG | DER LEHRE | DER BILDUNG A. Vauth | 2nd High-D meeting, 2.9.2022 | LGADs for Testbeam

The need for new timing detectors

Experimental environments in HEP are evolving \rightarrow Include track timing to address new challenging conditions

Time information complements spatial information:

- "4D" tracking: timing at each point along the track
- Timing layer: timing in event reconstruction

Example with timing info

Future detectors

Particle physics at high energy frontier: What comes beyond HL-LHC?

Future hadron colliders: Very high luminosity operation

 \rightarrow Challenges from extreme pile-up, track density, radiation load and data

R&D in many areas necessary

Radiation hardness, power consumption, spatial and timing resolution, ...

641

ECFA Detector R&D Roadmap 21

 Must happen or main physics goals cannot be met Important to meet several physics goals Desirable to enhance physics reach R&D needs being met 			
		2030-2035 2035- 2040-2045 >2045	
	Position precision		[d
Vertex detector ²⁾	Low X/X _o	$\bullet \bullet \bullet$	⊆.
	Low power		10
	High rates		
	Large area wafers ³⁾		Z
	Ultrafast timing ⁴⁾		8
	Radiation tolerance NIEL		Ļ
	Radiation tolerance TID		
Tracker ⁵⁾	Position precision		꼭
	Low X/X _o		
	Low power		÷
	High rates		P
	Large area wafers ³⁾		
	Ultrafast timing ⁴⁾		12
	Radiation tolerance NIEL		Ξ.
	Badiation tolerance TID		

Test beam

HEP detector R&D: dedicated beam tests for conceptual / technical design, calibrations, commissioning, ...

- Measurements of efficiency, resolution, ...
- Irradiation studies
- Integration tests with multiple detectors

Studies with Minimum Ionising Particles \rightarrow e.g. at DESY II Testbeam Faciliy

DER FORSCHUNG | DER LEHRE | DER BILDUNG A. Vauth | 2nd High-D meeting, 2.9.2022 | LGADs for Testbeam

DESY II facitily

Testbeam parasitically fed by DESY II synchrotron (PETRA III injector)

- Very high availability (~99% uptime)
- Test beam generation:
 - Primary carbon fiber targets generate bremsstrahlung photons
 - Conversion at secondary target to e⁺/e⁻ up to 6 GeV
 - Energy selected with dipole / collimator
- ► Single electrons, rates O(10k particles s−1s−2) depending on beam line settings
- Three individual beam lines, controlled by the user: shutter, area interlock, converter, momentum + collimation

Test beam infrastructure

- Movable stages, hall crane
- Magnet (dipole, solenoid)
- Dry nitrogen, cooling water
- Gas cabinets
- Laser alignment, weather station, cameras
- Beam telescopes:
 - Common infrastructure to study prototype detectors
 - Used to precisely define particle track in test beam
 - Resolution should be better than intrinsic resolution of DUT (device under test)
- \rightarrow EUDET-type telescopes (copies at DESY, CERN, Bonn, SLAC)

ER FORSCHUNG | DER BILDUNG A. Vauth | 2nd High-D meeting, 2.9.2022 | LGADs for Testbeam

LASER EIN - LASER ON

Status: MIMOSA telescopes

6 layers of MIMOSA26 pixel sensors

- ► 1152 × 576 pixels, pitch: 18.4 μ m, i.e. \sim 2 cm × 1 cm area
- Measured intrinsic sensor resolution: $\sigma \cong 3 \, \mu m$
- Rolling shutter readout, readout cycle 115 µs
- A decade of successful operation! telescope requested for ~90% of DESY TB weeks

Status: MIMOSA telescopes

6 layers of MIMOSA26 pixel sensors

- ► 1152 × 576 pixels, pitch: 18.4 μ m, i.e. \sim 2 cm × 1 cm area
- Measured intrinsic sensor resolution: $\sigma \cong$ 3 μ m
- Rolling shutter readout, readout cycle 115 µs
- A decade of successful operation! telescope requested for ~90% of DESY TB weeks

"No" time resolution \rightarrow upgrade needed to meet requirements of future detector test campaigns

Add faster device for time stamping the tracks \rightarrow Timing layer

Upgrade Plans

- Short term: existing sensor as intermediate solution
 - Timepix3
 - Already existing and functional
 - Timestamps O(1 ns)
- Long term: develop next-generation timing layer
 - LGAD
 - Allow for picosecond-timing
 - Requires R&D
 - Dedicated ROC?

Start with Timepix3(/4) for first prototypes

[CERN-PHOTO-201702-048-4]

[FBK RD50 TI-LGAD wafer]

Low Gain Avalanche Diodes

Ultra Fast Silicon Detectors optimised for timing measurements:

- Thin multiplication layer
- \rightarrow High field
- \rightarrow Increase signal by factor ${\sim}10$

LGADs are routinely produced in various sizes and pad numbers (e.g. by CNM, FBK, HPK)

$\mathcal{O}(30\,\text{ps})$ time resolution possible

Low Gain Avalanche Diodes suitable to measure both time and space

- Preferred for timing: 30-50 μ m thickness, gain O(10)
- Segmentation to improve spatial resolution
- Interpad regions with no gain O(≈ 30 µm to 70 µm)
- \rightarrow R&D challenge: finer segmentation, with improved fill factor

Several technology options:

Resistive AC-Coupled LGAD

Options for first timing layer prototypes 55 µm pitch, read out with Timepix3

TI-LGAD

Trench isolation:

- Barrier structures replaced by trenches to isolate the pixels
- Filled with SiO2, Si3N4, Polysilicon
- Typical trench width < 1 µm, much smaller than conventional segmentation
 - ightarrow smaller no-gain region
 - $\mathcal{O}(\approx4\,\mu\text{m}$ to $7\,\mu\text{m})$

b) Trench-isolated LGAD

TI-LGAD

шн

Trench isolation:

Barrier structures replaced by trenches to isolate the pixels

ge [a.u.]

- Filled with SiO2, Si3N4, Polysilicon
- \blacktriangleright Typical trench width < 1 µm, much smaller than conventional segmentation
 - \rightarrow smaller no-gain region

 $\mathcal{O}(\approx 4 \, \mu m \text{ to } 7 \, \mu m)$

FBK, trench isolated: received first test structures

General properties: $45\,\mu m$ substrate, trench depth "D2", no carbon

Samples from three different wafers (low/high diffusion, different trench processes)

➤ The "big ones":

 $4~mm~x~4~mm,~pixels~2x2~(1300~\mu m~x~1300~\mu m)$ all single trench, 18 with (6 without) gain

The "small ones":

2 mm x 2 mm, pixels 4x4 ($250 \mu \text{m} \times 250 \mu \text{m}$) some single/double trench, 54 with (18 without) gain

First LGAD samples (2)

THH.

First look with the laser microscope:

DER FORSCHUNG | DER LEHKE | DER BILDUNG A. Vauth | 2nd High-D meeting, 2.9.2022 | LGADs for Testbeam

Beta setup for timing measurements under construction:

- Two LGADs (parallel to each other)
- Beta source with collimator in front
- Each detector connected to an amplifier
- Signals fed into oscilloscope, triggers on signal in both
- ► Measure ∆t distribution, Combinations of three LGADs → time resolution

Beta setup in Hamburg

New UHH Beta setup in commissioning right now

Universität Hamburg DER FORSCHUNG | DER EINSTEIN A. Vauth | 2nd High-D meeting, 2.9.2022 | LGADs for Testbeam

Summary & Outlook

- Test beams: tool for detector development
- ► TB infrastructure: EUDET beam telesopes
- More and more R&D on fast timing detectors → growing need for timing layer to test them
- Short term: Timepix3 plane for improved timing O(1 ns)

Long term: LGAD+TP3(TP4?) layer for O(tens ps) timing

- First test structures available
- Setup of LGAD characterisation tools in progress
- Next step: 55 µm pitch structures

Backup Slides

LGAD characterisation

IШ

Setup for IV and CV measurements:

IV-curves (textbook and reality)

[M. Ferrero, R. Arcidiacono, M. Mandurrino, V. Sola, N. Cartiglia, 2021 "An Introduction to Ultra-Fast Silicon Detectors", ISBN 9780367646295]

DER FORSCHUNG | DER LEMEE | DER BILDUNG A. Vauth | 2nd High-D meeting, 2.9.2022 | LGADs for Testbeam

FBK measurement with automatic probe (before dicing)

Solving for LGAD time resolution

(

Use three LGADs measured in three combinations to compute individual time resolutions

$$\sigma_{12}^2 = \sigma_1^2 + \sigma_2^2$$
, $\sigma_{13}^2 = \sigma_1^2 + \sigma_3^2$, $\sigma_{23}^2 = \sigma_2^2 + \sigma_3^2$

$$\sigma_{12}^2 - \sigma_1^2 = \sigma_2^2 = \sigma_{23}^2 - \sigma_3^2$$
 , $\sigma_3^2 = \sigma_{13}^2 - \sigma_1^2$

$$\sigma_{12}^2 - \sigma_1^2 = \sigma_{23}^2 - \sigma_{13}^2 + \sigma_1^2$$

$$\sigma_1^2 = \frac{1}{2} \left(\sigma_{12}^2 + \sigma_{13}^2 - \sigma_{23}^2 \right)$$

(and equivalent for the other two)

to can determine time resolution of all three LGADs

iLGAD

IШ

Inverse LGADs:

- No segmentation of the multiplication layer
- Hole collection
- Complex double side process (first generation)

[D. Flores, SIMDET '16, Sep 2016]

inverse LGAD (CNM first generation)

DER FORSCHUNG | DER BILDUNG A. Vauth | 2nd High-D meeting, 2.9.2022 | LGADs for Testbeam

iLGAD

IШ

Inverse LGADs:

- No segmentation of the multiplication layer
- Hole collection
- Trenches to isolate the active area (third generation)
- Single-side process

[D. Flores, SIMDET '16, Sep 2016]

DIR FORSCHUNG | DER LEHRE | DER BILDUNG A. Vauth | 2nd High-D meeting, 2.9.2022 | LGADs for Testbeam

Testbeam time 2021:

- No LGADs, but three different Timepix3 assemblies
- Test readout, DAQ and reconstruction chain
- ightarrow Two weeks (plus some bonus time) in area 21

W5 E2 (TB 1)

W19_K6 (TB 2) 500um Si, n-in-p

