Testbeam and ⁵⁵ Fe-characterisation of DPTS

A MAPS prototype produced in $65\,\mathrm{nm}$ TPSCo CMOS technology towards ALICE ITS3

2nd High-D Consortium Meeting

Silvia Masciocchi Pascal Becht Marius Menzel

02/09/2022

ALICE ITS

- ALICE Inner Tracking System (ITS2) recently installed
- Consists of 7 layers of ALPIDE Monolithic Active Pixel Sensors (MAPS)
- Towards HL-LHC: Planned upgrade to ITS3
- Three innermost layers will be replaced
- New design features:
 - $65\,\mathrm{nm}$ CMOS technology
 - Stiched, wafer-size sensors
 - Truly cylindrical MAPS due to wafer bending
- Extensive R&D program featuring several sensor prototypes

Sketch of ALICE ITS2

DPTS: general information

- DPTS stands for "Digital Pixel Test Structure"
- 32×32 pixels, $15 \times 15 \mu m^2$ pitch each (+1 monitor pixel)
- 480imes480 μm^2 active area
- Fabricated in 65nm TPSCo technology
- Special Features:
 - Time-based encoding of hit position and ToT
 - Asynchronous digital readout
 - Provides possibility of capacitive test pulse injection
- Aiming at testing reliability of this special architecture

DPTS: digital readout

DPTS: position decoding

- Pulse every pixel several times
- Record corresponding PID and GID values
- Calculate calibration point as Center-of-Gravity (CoG) of this distribution
- Use nearest-neighbour search for measured GID/PID pair in order to decode hit-position

⁵⁵ Fe ToT distribution for DPTS

- ToT can be extracted from time difference between rising-edge and falling-edge pulse train
- Spectrum corrected for inter-pixel variation of the ToT response
- K_{α}, K_{β} , Si-escape and Si-fluorescence peak resolvable
- Fitted spectrum in order to extract peak positions (Gauss + Background)

55 Fe Energy calibration DPTS

- Peak positions can be used in order to obtain ToT(E) calibration
- Linear fit justified for considered ToT range
- Measured mean ToT response of the sensor at 600mV injection voltage to be: $ToT_{mean} = 1.74e^{-05}s$
- Rough estimation of injection capacitance:

$$E(ToT_{mean}) \approx 2.85 keV$$

$$\begin{split} N_{e^-}(600mV) &= \frac{E}{W_{Si}} \approx 791e^-\\ C &= \frac{Q}{U} = \frac{N_{e^-} \cdot e}{600mV} \approx 210aF \end{split}$$

⁵⁵ Fe spectrum APTS vs. DPTS

- Comparing DPTS energy resolution to dedicated analogue sensor APTS
- Considering only single-pixel clusters
- Converted to charge using energy-calibration

 $\begin{array}{l} (\text{ToT} \rightarrow \text{energy} \rightarrow \text{\#} \\ \text{electrons}) \end{array}$

• DPTS ToT response similar to APTS

ALICE ITS

- Aimed to test irradiated/ non-irradiated DPTS under controlled environment
- 5 ALPIDE reference planes (2 upstream, 3 downstream)
- DPTS trigger mounted on a moving stage
- DPTS DUT chilled to 20°C
- 1 upstream scintillator for alignment

2nd High-D Consortium Meeting

Testbeam results - non irradiated sensor

- Efficiency = $\frac{\text{efficient tracks}}{\text{total tracks}}$
- FHR obtained by random triggering with no signal source

• Wide operating range above 99 % efficiency with low FHR for every V_{sub}

Testbeam results - non irradiated sensor

• Position resolution:

 $\sqrt{x_{\rm res}y_{\rm res} - \sigma_{\rm telescope}^2}$

 Due to small epitaxial layer: one pixel clusters dominate → resolution comparable to binary resolution DPTS

Testbeam results - irradiated sensor

Summary & Outlook

Achieved:

- ⁵⁵ Fe energy calibration used in order to get a first estimate of the injection capacitance
- ⁵⁵ Fe results hint to a very good energy resolution
- DPTS tested in optimized operation conditions in beam
- Very good results on efficiency

Next steps:

- Measuring 55 Fe spectra for all irradiated sensors \rightarrow comparison of energy resolution
- Precise capacitance calibration with different pulsing voltages
- Clustersize analysis of ⁵⁵ Fe measurements
- Paper in preparation with shown and other results

Thank you for your attention! :)

Backup: Testbeam campaigns

- DESY September 2021, 5.4 GeV e^-
 - first DPTS Testbeam, fixed working point
- SPS November 2021, 10 GeV π/p mixed beam
 - successfully operated first p-irradiated DPTS
- DESY March 2022, 3.4 GeV $\mathrm{e^-}$
 - Test of neutron irradiated DPTS $(10^{13} 10^{15} 1 MeV n_{eq}/cm^2)$
 - no stable environmental conditions
- + PS May 2022, 10 GeV π/p mixed beam
 - revisited $10^{15} \ 1 MeV n_{\rm eq}/cm^2$ sensor
 - tried $10^{16}~1 MeVn_{\rm eq}/cm^2$ sensor \rightarrow not operable
 - controlled environment (temperature, in-situ calibrations)
- + PS July 2022, 10 GeV π/p mixed beam
 - revisited 10^{13} and $10^{14}~1 MeV n_{\rm eq}/cm^2$ sensor
 - tested 1, 10, 50 Mrad TID irradiated sensors
 - Analysis ongoing

Backup: General Testbeam analysis procedure

- General analysis procedure:
 - Reference track fitted with ALPIDE hit information
 - Determine intersection of fitted track with DPTS plane
 - Search for DPTS hit in corresponding time frame

 $Efficiency = \frac{\text{efficient tracks}}{\text{total tracks}}$

Analysis carried out with Corryvreckan

Backup: Testbeam residuals

Backup: ⁵⁵ Fe Setup

Backup: Logarithmic corrected ToT spectrum

Backup: ⁵⁵ Fe ToT spectrum - interpixel variation

Backup: ⁵⁵ Fe ToT spectrum - uncorrected

