The readout circuitry of Super-ALPIDE and MAPS in embedded in Polyimide

Alperen YÜNCÜ

September 2, 2022

ALICE

Detector and main goals

- Study of QGP in heavy-ion collisions at LHC
 - i.e. up to O(10k) particles to be tracked in a single event
- Reconstruction of charm and beauty hadrons
- Interest in low momentum (≲1 GeV/c) particle reconstruction

It is fabricated in MAPS(Monolithic Active Pixel Sensor) technology. Using TowerJazz $180\,\text{nm}$ process. Cover $10\,\text{m}^2$ features $12.5\,\text{Gpx}.$

- ITS2 is expected to perform according to specifications or even better
- ► The Inner Barrel is ultra-light but rather packed → further improvements seem possible
- Key questions: Can we get closer to the IP? Can we reduce the material further?

ITS3 Detector Concept

Beam pipe Inner/Outer Radius (mm)	16.0/16.5		
IB Layer Parameters	Layer 0	Layer 1	Layer 2
Radial position (mm)	18.0	24.0	30.0
Length (sensitive area) (mm)	300		
Pseudo-rapidity coverage	±2.5	±2.3	±2.0
Active area (cm ²)	610	816	1016
Pixel sensor dimensions (mm ²)	280 x 56.5	280 x 75.5	280 x 94
Number of sensors per layer	2		
Pixel size (µm ²)	O (10 x 10)		

Key ingredients:

- 300 mm wafer-scale chips, fabricated using stitching (65 nm TowerJazz process)
- thinned down to 20-40 μm (0.02-0.04% X0), making them flexible
- bent to the target radii

< ロ > < 同 > < 回 > < 回 >

 mechanically held in place by carbon foam ribs

Key benefits:

- extremely low material budget: 0.02-0.04% X0(beampipe: 500 µm Be: 0.14% X0)
- -homogeneous material distribution: negligible systematic error from material distribution

The whole detector will comprise six (!) chips (current ITS IB: 432) - and barely anything else

Super ALPIDE Chips

- To study the bending and interconnection of large pieces of processed chips, "super-ALPIDE" is built
- Comprises of 1 silicon piece cut from an ALPIDE wafer size of 14 cm×6 cm

Super ALPIDE Chips

	chips
 1 2 2 1 2 4 2 5 1 2 7 1 2 1 9 30 2 2 2 2 2 2 2 4 2 5 2 7 1 2 1 9 30 2 2 2 2 3 2 3 2 2 2 2 2 2 2 3 2 9 30 3 1 2 5 3 2 4 2 3 5 3 5 3 7 3 3 9 40 4 1 4 2 	

18 ALPIDE chips, covering about a half of an ITS3 half-Layer0

- Super-ALPIDEs are actually an array of ALPIDES.
- They consist 9×2 ALPIDE chips.

Alperen YÜNCÜ

High-D

Exoskeleton

Super-ALPIDE wire-bonding setup

- 3-D printed.
- Designed to support super-ALPIDEs after bending.
- Windows to reach interconnection points at middle of super-ALPIDE
- FPC glued for connections

< 17 ▶

< 3 > < 3</p>

Bonding

- The first row of ALPIDEs will be wire-bonded to an edge-FPC (just like final ITS3)
- The rest will be bonded to FPC on Exoskeleton via long wires

4 A N

Characterisation of FPC

- FPC has been characterised using FPGA via PMOD connection
- Clock signals and PRBS-7 patterns

Characterisation of FPC

There is no distortion on signal due to FPC

Alperen	YUN	ICU

イロト イポト イヨト イヨ

Readout of a single ALPIDE

- PMOD adapter boards are built for ALPIDE
- We use single ALPIDE to test readout

A ►

September 2, 2022

 There is some problems about mismatching chipID's which I am working on right now.

Readout of Triple ALPIDE

 test the readout using triple chips to check readout multiple chip on same readout

< 🗇 🕨

MAPS in Polyimide

Figure 1: The MAPS foil production process steps.

Figure 3: Photographs (front and back) of the assembly. The ALPIDE is embedded at the top part (annotated on the right).

- MAPS (Monolithic Active Pixel Sensors) embedde in Polyimide
- Paper is on arxiv: https://arxiv.org/pdf/2205.12669.pdf
- · Submitted to Nucl. Instrum. Methods Phys. Res. A

イロト イヨト イヨト イヨト

Bending of MAPS

- Because of Polymide, maps has some plastic properties
- Thanks to Polymide layer all chips are protected and hardly can be broken

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- Bonded Super-ALPIDE hasn't arrived, yet. We expect them to arrive by the end of September.
- The electrical characterisation on FPC have been successfully done.
- Readout tests are still ongoing.
- First samples of Maps in Polymide are tested for physical properties. How the physical properties changes by temperature zchanges will be ivestigated.

글 🕨 🖌 글