Wavelength-shifter coated polystyrene as a low-cost plastic scintillator detector

A. Brignoli¹, A. Conaboy¹, V. Dormenev³, **Doramas Jimeno**^{1,2}, H. Lacker¹, C. Scharf¹, J. Schmidt¹, H. G. Zaunick³

¹ Humboldt-Universität zu Berlin
² Universitat de Barcelona
³ Justus-Liebig-Univertsität

September 5th, 2022

Index

- > WOM's working principle
- Setup
- Measurements
 - ♦ PMT calibration
 - ✤Polystyrene
 - ✤PMMA
- Results
- Conclusions

WOM's working principle

A. Ernst, "Study of the position-dependent detector response of a liquid-scintillator detector instrumented with WOMs and SiPMs using cosmic muons"

Wavelength-shifting (WLS) paint spectra

Doramas Jimeno

Detection

- WOM: Wavelength-shifting Optical Module
- Cylindrical geometry \rightarrow works in principle for a planar geometry
- Can we replace the PMMA WOM material with an intrinsically scintillating material so that we directly coat the active detector material?

Setup: Polystyrene (PS)

- Commercially bought 5 x 500 x 1000 mm plate → 24,75 €
- 5 x 50 x 50 mm³ plates were cut and polished
- Dupont[™] Tyvek[®] 1073D paper wrapping

Dipcoater

Setup: General view

Setup: Trigger box

- Two scintillators of 1 mm of thickness and Tyvek paper wrapping
- Two PMMA light guides
- Optical gel coupling to the PMT Hamamatsu R5900
- Working at 780 V

https://indico.cern.ch/event/198640/contributions/1480489/attachments/294406/411441/Sr_setup_FCAL.pdf

Setup: PMT and digitizer

- PMT : Hamamatsu R1924A working at 1000 V
- PS: 5 x 50 x 50 mm plate wrapped
- Optical gel coupling
- Digitizer: 16+2 channel WaveCatcher
- Data analysis: C++ (ROOT software framework)

Doramas Jimeno

PMT Hamamatsu R1924A calibration measurements

- Pulsed laser, 402.6 nm wavelength
- 30000 events
- Integration window of 16 ns

PMT Hamamatsu R1924A calibration measurements

- COLLECTION → Poisson
- AMPLIFICATION → Gaussian

PS measurements

- Scintillation + Cherenkov radiation
- Integration window: 110 ns 200 ns

PS time-integrated spectra

- Energy loss of a charged particle inside a thin layer of material → Landau
- Non-negligible electronic noise → Gaussian

Convoluted Landau * Gaussian fitting function

PMMA measurements

- Only Cherenkov radiation
- Integration window: 110 ns 200 ns

PMMA time-integrated spectra

Doramas Jimeno

MPV [mV·ns] of the Langaus fit

	UNCOATED	SINGLE COATED	DOUBLE COATED
PS	$398,96 \pm 2,94 \pm 13,07$	$1938,55 \pm 12,45 \pm 10,50$	2513,18±13,04±15,55
PMMA	$201,72 \pm 1,71 \pm 0,55$	$274,52 \pm 1,45 \pm 0,71$	$318,67 \pm 1,67 \pm 1,90$

 $1 \text{ PE} \sim 46,05 \pm 0,47 \text{ mV} \cdot \text{ns}$

Mean number of PE collected

	UNCOATED	SINGLE COATED	DOUBLE COATED
PS	8,66±0,06±0,28	$42,10\pm0,27\pm0,23$	$54,58\pm0,28\pm0,34$
PMMA	$4,38 \pm 0,04 \pm 0,01$	$5,96 \pm 0,03 \pm 0,02$	$6,92\pm0,04\pm0,04$

Is the detected signal in coated PS mainly from scintillation?

- Rise-time for PS longer than for PMMA → Cherenkov light always arrives earlier ✓
- Long tail for PS while no tail for PMMA → Scintillation light with significant decay times ✓

Doramas Jimeno

Conclusions

- The WOM principle as a light collector and light guide in a cylindrical geometry can be also used in a planar geometry.
- The WLS paint can be applied directly to the active detector material.
- Pure, commercial PS is a possible active detector material, since it scintillates in the UV and is rather cheap.
- The detected light yield of 55 PE makes the material interesting.

Next steps...

- Quantification of the fraction of Cherenkov and scintillation radiation
- Study of the time and spatial resolution
- Study of the light yield per energy deposit
- Study of the radiation hardness of the material

Backup

Sum of waveforms distribution normalised to maximum value

Doramas Jimeno

Backup

Sum of waveforms distribution normalised to maximum value

Doramas Jimeno

Doramas Jimeno

Backup

• Events cut:

#Entries

≻ Trigger box \rightarrow integral < 200 mV·ns ^(*)

^(*)We need ~1.4 MeV to traverse 7 mm of polystyrene ${}^{90}Sr \rightarrow {}^{90}Y$: 0.546 MeV ${}^{90}Y \rightarrow {}^{90}Zr$: average of 0.9 MeV max of 2.28 MeV

