Detection Performances of MIMOSIS-1

M.Winter / IJCLab, 2 Septembre 2022

on behalf of the CBM-MVD teams of IPHC/CNRS, IKF & GSI

• CONTENTS:

- MIMOSIS: a multipurpose CMOS Pixel Sensor
- The case of the CBM-MVD \equiv driving force
- Description of MIMOSIS-1 (novel aspects):
 - sensitive volume & in-pixel circuitry
 - · digital signal compression circuitry
- MIMOSIS-1 test results:
 - noise performance: pixel level, pixel-to-pixel
 - M.I.P. detection efficiency & Spatial resolution
 - Impact of radiation load
- Summary & Outlook

MIMOSIS-1 thinned to 60 μm

CBM-MVD

- More on the CBM-MVD: M.Deveaux et al. (CBM coll.), The Micro-Vertex Detector of the CBM Experiment at FAIR, preprint GSI-2022-00549
- More on MIMOSIS: F. Morel at TIPP-21, R. Bugiel at TWEPP-21, A. Dorokhov at VCI-22, J.B. Arnoldi-Meadows & H. Darwish at IWORID-22
- More on CREMLINplus applications: WP-7 of H2020-EU, Grant agreement ID: 871072, DOI 10.3030/871072
- More on Higgs-factory applications: M. Winter et al., *Status and Perspectives of ...*, PoS(Vertex2019)045, DOI: 10.22323/1.373.0045

CMOS Pixel Sensor \equiv DETECTOR with INTEGRATED FRONT-END CIRCUITRY

Cross-section of ALPIDE sensor (Courtesy of M. Mager et al.)

• Thin sensitive volume (\pm 30 μm) \Rightarrow small signal charge/pixel (\sim 10²⁻³ e⁻) \Rightarrow very low noise μ circuits (< 30 e⁻ENC)

MIMOSIS for VARIOUS UPCOMING TRACKING DEVICES

- MIMOSIS: 5 μm ; 5 μs ; 100 MHz/cm² ; < 100 mW/cm² ; 10¹⁴ n_{eq}/cm² ; 5 MRad ; ...
 - SHORT Term: Vertex Detector of the CBM Heavy Ion Expt / FAIR \equiv Driving Force
 - SPIN-OFF: H2020-CremlinPlus \Rightarrow Beam Telescope, neutron detectors, tau-charm factory ?
 - **LONG TERM:** Vertex Detector & Trackers for a Higgs-Top Factory
- **CBM-MVD vs Higgs-Top FACTORY EXPTS:** SIMILAR REQUIREMENTS with DIFFERENT OPTIMISATIONS
 - **CBM-MVD** : radiation tolerance requires dedicated design effort
 - Higgs-Top Factory : spatial resolution & read-out speed require dedicated design effort

• DESIGN PARAMETRES CONCERNED BY THE OPTIMISATIONS:

- **Epitaxial Layer Characteristics :** doping profile, thickness
- In-Pixel Circuitry:: strength of drift field in the epitaxial layer

MIMOSIS Prominent Parametres

- MIMOSIS pixel array derived from ALPIDE:
 - $_{st}$ TJsc 180 nm imager process with high-res (\geq 25 μm thick) epitaxy
 - * modified epitaxy profile to enhance depletion against NI radiation

(\sim 10 times higher than ALPIDE)

- * 1024 col. of 504 pixels with asynchronous r.o. (ALPIDE)
 in-pixel discri. with binary charge encoding
 with DC-coupling (a la ALPIDE) & AC-coupling (new)
- * pixel: 27x30 $\mu m^2 \Rrightarrow \sigma_{sp} \gtrsim$ 5 μm
- * affordable hit density \simeq 50 x ALPIDE (new digital circuitry)
- $*~\Delta t \sim$ 5 μs = twice faster than ALPIDE
- $_{*}\,$ power density \gtrsim 50 mW/cm 2 (vs hit density)
- Step-1 (2018): MIMOSIS-0 proto. (32 col. of 504 pixels)
 - * validated in-pixel circuitry variants (\sim 200 T/pixel)
 - * allowed exploring the limit of time resolution
- Step-2 (2020): MIMOSIS-1 full size prototype
 - * fabricated in 2020 \Rightarrow fonctionnality tests
 - $_{*}$ 2021-22: noise & detection performance (\gtrsim 5 beam tests)

Physics parameter	Requirements
Spatial resolution	~ 5 um
Time resolution	~ 5 us
Material budget	0.05% X ₀
Power consumption	< 100 – 200 mW/cm ²
Operation temperature	- 40 °C to 30 °C
Temp gradient on sensor	< 5K
Radiation tol* (non-ion)	~ 7 x 10 ¹³ n _{eq} /cm ²
Radiation tol* (ionizing)	~ 5 MRad
Data flow (peak hit rate)	@ 7 x 10 ⁵ / (mm²s) > 2 Gbit/s

~30.97 mm

MIMOSIS-1: EXPLORATION OF EPITAXY VARIANTS

MIMOSIS-1 – TECHNOLOGY

W. Snoeys, "FASTPIX: sub-nanosecond radiation tolerant CMOS pixel sensors", ATTRACT

from R. Bugiel - TWEPP-21

MIMOSIS-1: EXPLORATION OF IN-PIXEL CIRCUITRY VARIANTS

MIMOSIS-1 – SENSOR OVERVIEW

- 4 submatrices •
 - A, D \rightarrow optimization of CE18 for radiation hardness
 - B, C \rightarrow similar to MIMOSIS-0
- Pixel size: 26.88 μm x 30.25 μm ٠
- Pixel types: ٠
 - \rightarrow DC pixels: ALPIDE-derived
 - \rightarrow AC pixels: top bias up to > 20V
- Possibility of pulse injection and pixel masking
- Matrix active area: ≈ 4.2 cm²
- Power consumption: $40 70 \text{ mW/cm}^2 \rightarrow \text{depending on hit rate}$

from R. Bugiel - TWEPP-21

MIMOSIS-1: NOISE PERFORMANCE

GENERAL PERFORMANCE – LABORATORY CHARACTERIZATION

Laboratory characterization

- characterization by pulse injection
- complex phase space of MIMOSIS1 (tuning parameters needed)
 - estimation of thresholds, Fixed Pattern Noise (FPN) and Thermal Noise (TN)
 - all measurements at 15°C
- Ex: performance of matrix B @ 150e threshold (before irradiation):
 - TN: ~3.5 e ENC
 - FPN: ~10 e ENC

Preliminary conversion factor from 1 mV \rightarrow 1 e- (within +/- 25%)

Summary performance before irradiation:

- Similar, satisfactory performance of all matrices
- TN: 3-5 e ENC
- FPN: 7-10 e ENC in the operation range
- AC pixels slightly lower FPN than DC

from R. Bugiel - TWEPP-21

MIMOSIS-1: M.I.P. DETECTION EFFICIENCY

- DESY (3-6 GeV e^{\pm}) & CERN-SPS (O(10²) pions):
 - * tests of 3 epitaxy variants: standard, n-gap, p-stop
 - \star various back-bias values considered: -3 V, -1 V, 0 V
 - * studies performed w.r.t. in-pixel discriminator threshold
 - * results are still preliminary
- DC-coupled pixels:
- $_{*}~\epsilon_{det} \gtrsim$ 99.5 % up to > 250 e $^-$
- * no significant EPI profile or V_{BB} dependence
- AC-coupled pixels: top-bias of + 10 V
- $*~\epsilon_{det} \gtrsim$ 99.5 % up to > 250 e $^-$
- * efficiency seems V_{BB} dependent \Rightarrow origin ?
- COMMENTS:
- * Det. effi. \simeq 100 % over large range of threshold values \hookrightarrow in particular for EPI & in-pixel μ circuit variants
- * Role of back-bias voltage for AC-pixels requires better understanding

MIMOSIS-1: IMPACT of NIEL on DETECTION EFFICIENCY

- Sensors exposed to neutron source:
 - $\ast\,$ 3 fluence values: 0.3 / 1 / 3 $\cdot 10^{14} n_{eq}/\text{cm}^2$
 - * example of p-stop epitaxy variant
- DC-coupled pixels: $V_{BB} = -3 V$
- $_{*} \lesssim 1 \cdot 10^{14} {
 m n}_{eq}/{
 m cm}^2$: $\epsilon_{det} \gtrsim$ 99% up to \gtrsim 250 e $^-$
- * $3 \cdot 10^{14} n_{eq}$ /cm²: $\epsilon_{det} \lesssim$ 98% above 120 e⁻
- AC-coupled pixels: top-bias of + 10 V * $\lesssim 1 \cdot 10^{14} n_{eq}/cm^2$: $\epsilon_{det} \gtrsim 99\%$ up to $\gtrsim 250 \text{ e}^-$ * $3 \cdot 10^{14} n_{eq}/cm^2$: $\epsilon_{det} \gtrsim 98\%$ up to 140 e⁻
- COMMENTS:
- * Det. effi. \gtrsim 99% over large range of threshold values for anticipated annual fluence (1.10¹⁴ n_{eq}/cm²)
- * 3 X annual fluence still affordable (best with AC pixel)
- * Added value of AC-pixels significant but relatively modest
- $_{*}$ Fake rate still modest \Rightarrow threshold values \lesssim 150 e⁻ OK

MIMOSIS-1: IMPACT of TID on DETECTION EFFICIENCY

- Sensors exposed to XRay sources:
 - * 2 TID doses: 1 & 5 MRad
 - * example of p-stop epitaxy variant
- DC-coupled pixels: $V_{BB} = -3 V$
- $_{*}~\epsilon_{det} \gtrsim$ 99.5% up to well beyond 250 e $^-$
- * fake rate increase without impact on lowest operationnal threshold values (\sim 100 e⁻)
- AC-coupled pixels: top-bias of + 10 V
- $_{*}~\epsilon_{det}$ \gtrsim 99.5% up to well beyond 250 e^-
- COMMENTS:
- * Det. effi. not significantly affected by anticipated TID/yr
- * Behaviour of AC-pixels requires more understanding
- $_{*}$ Fake rate still modest \Rightarrow threshold values \sim 100 e⁻ OK

MIMOSIS-1: SPATIAL RESOLUTION and CLUSTER SIZE

 $_{*}$ Objective of \sim 5 μm proven to be reachable

- $_{*}$ Standard EPI provides about 1 μm better resolution ; AC-pixels \gtrsim 0.5 μm worst then DC-pixels
- * Certain low threshold measurements still under investigation

MIMOSIS-1: IMPACT of N.I. LOAD on SPATIAL RESOLUTION

- Example of p-stop epitaxy:
 - $_{*}$ 2 fluence values considered: 1 & 3 \cdot 10 14 n $_{eq}$ /cm 2
 - $_{*}\,$ resolutions along both pixel dimensions (27 & 30 $\mu m)$
- DC-coupled pixels:
- * $1 \cdot 10^{14} n_{eq}/cm^2$: loss of $\lesssim 1 \ \mu m$ * $3 \cdot 10^{14} n_{eq}/cm^2$: loss of $\lesssim 3 \ \mu m$
- AC-coupled pixels: top-bias of + 10 V * $1 \cdot 10^{14} n_{eq}/cm^2$: loss of $\lesssim 0.5 \ \mu m$ * $3 \cdot 10^{14} n_{eq}/cm^2$: loss of $\lesssim 2.5 \ \mu m$
- COMMENTS :
- * Difference between DC & AC-pixel performance modest
- $*\,$ Up to anticipated yearly N.I. load, the resolution remains close enough to 5 μm for threshold values \lesssim 150 e^-
- * Spatial resolution significantly degrades after 3 times yearly N.I. load

SUMMARY - OUTLOOK

- MIMOSIS-1 \equiv 0.5 MPix full size prototype for CBM-MVD / FAIR:
 - * 5 μm ; 5 μs ; > 10¹⁴ n_{eq}/cm²; 5 MRad, etc. validated
 - $_{*}$ Added value of AC-coupling & EPI variants \pm **assessed**
 - Still some observations requiring further studies (N.B.: results based on single chips):
 e.g.: M.I.P. detection with modified epitaxy, spatial resolution at low threshold, etc.
 - * Standard epitaxy indicates that \sim 4 μm resolution may be achievable in absence of sizeable radiation loads (topic addressed within next step)
- NEXT MAJOR STEP: MIMOSIS-2 \equiv complete full size prototype for CBM-MVD
 - $_{*}$ Engineering Run launched in August \Rightarrow possibly back from foundry in Q4/'22 (tbc)
 - $_*$ New epitaxy thicknesses explored: 30 and 50 μm
 - \Rightarrow possibly improving detection performances, e.g. resolution, efficiency after NIEL (?)
 - * Engineering Run includes a \leq 500 ns variant of medium size (32 x 504 pixels) prototype addressing tracking devices adapted to future e⁺e⁻ colliders (modest radiation load)
 - \Rightarrow investigate whether 50 μm thick epitaxy allows for \lesssim 4 μm resolution
- BEYOND MIMOSIS-2: Final MVD sensor MIMOSIS-3 fabrication anticipated in 2023-24