

## **Introduction to Artificial Neural Networks**

#### Andrea Santamaría García

Laboratory for Applications of Synchrotron Radiation (KIT-LAS) 07/09/2022







#### **UNIVARIATE LINEAR REGRESSION** (one prediction)

#### Simple (one feature)

We want to fit linearly a set of points  $(x_i, y_i)$ 



Hypothesis function:  $h_{\theta}(x_i) = \theta_0 + (\theta_1)x_i$ 

weights Estimated from data -

- regression coefficients
- parameters of the model

Space of input variables

= feature

independent variable

<u>continuous</u>: regression problem <u>discrete</u>: classification problem

Space of output variables

= estimated value

- dependent variable
- scalar response

Multiple (several features)

$$h_{\theta}(x) = \underbrace{\theta_0}_{i, k=1} + \sum_{i, k=1}^{n, p} \theta_k \phi_k(x_i) = \begin{cases} i = 1, \dots, n & \text{data points} \\ k = 1, \dots, p & \text{features} \\ x_{i0} = 1 & \text{pseudo-variable} \\ \phi_k(x_i) = x_{ik} & \text{basis function} \end{cases}$$

**Polynomial** 

$$\phi(x)=(x^0,x^1,x^2,\cdots,x^p)$$

Fits a nonlinear model to the data, but it's still linear in the parameters  $\theta$  of the model

**Matrix notation**  $h_{\theta}(x) = \theta^T x = x^T \theta = X\theta$ 

 $[n \times (p+1)] \times [(p+1) \times 1]$  bias included

#### **UNIVARIATE LINEAR REGRESSION**

#### Loss (cost) function

**Goal**: choose  $\theta_k$  such that  $h_{\theta}(x_i)$  is as close to  $y_i$  as possible  $h_{\theta}(x_i) - y_i = r_i$ 



#### **Assumption**:

observations  $(x_i, y_i)$  = result of random deviations

#### **Least Squares**

Reasonable choice that works well for many regression problems (desirable properties)

Find the analytical minimum of:

$$\sum_{i=1}^{n} r_i^2 = \sum_{i=1}^{n} (h_{\theta}(x_i) - y_i)^2 = |\mathbf{y} - \mathbf{X}\boldsymbol{\theta}|^2 = J(\theta_k)$$

#### loss (cost) function

- Takes an average difference of the predictions of the hypothesis
- "Intuitive" number to represent deviation from target
- · Measures of performance of a model

as small as possible

= minimization problem

residual

error/disturbance/noise

#### UNIVARIATE LINEAR REGRESSION

#### **Loss functions - least squares**

#### 

- System is overdetermined
  - Points > features (n > p + 1)
- Uncertainties in the data are "controlled"
  - > Otherwise: maximum likelihood estimation, ridge regression, lasso regression, least absolute deviation, bayesian linear regression, etc.



Find the analytical minimum of:

$$\sum_{i=1}^{n} r_i^2 = \sum_{i=1}^{n} (h_{\theta}(x_i) - y_i)^2 = |\mathbf{y} - \mathbf{X}\boldsymbol{\theta}|^2 = J(\theta_k)$$



#### **OPTIMIZERS**

#### **Example: gradient descent**

Algorithm to <u>iteratively</u> solve  $argmin_{\theta} J(\theta_k)$ 

$$\vec{\theta} \coloneqq \vec{\theta} - \alpha \nabla J(\theta_k)$$
 step size take repeated steps in the opposite direction of the gradient

$$\frac{\partial J(\theta_0, \theta_1)}{\partial \theta_0} = \frac{1}{n} \sum_{i=1}^{n} (\theta_0 + \theta_1 x_i - y_i)$$

$$\frac{\partial J(\theta_0, \theta_1)}{\partial \theta_1} = \frac{1}{n} \sum_{i=1}^{n} x_i (\theta_0 + \theta_1 x_i - y_i)$$

$$\theta_0 := \theta_0 - \alpha \frac{\partial J(\theta_0, \theta_1)}{\partial \theta_0}$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial J(\theta_0, \theta_1)}{\partial \theta_1}$$
updated simultaneously



- Depending on the initial  $(\theta_0, \theta_1)$  optimization can end up at different points
- If the loss function is not strictly convex and saddle points exist <u>finding the global minimum is not guaranteed</u>
- Works in any number of dimensions
- Iteratively (this example):  $\mathcal{O}(features . points^2)$
- Analitycally (normal equation):  $O(points^3)$

#### **OPTIMIZERS**

#### Feature scaling

- Optimizers can converge faster if the features are on a similar scale
- Becomes very important in polynomial regression:

$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3$$

- Normalization:  $-1 \le x_i \le 1$  or  $0 \le x_i \le 1$
- Standardization:  $\mu = 0$ ,  $\sigma^2 = 1$



#### Learning rate

- The optimizer is working correctly if the loss decreases after every iteration
- Usual to **declare convergence tests** (e.g., declare convergence when  $J(\theta)$  decreases by less than  $10^{-3}$  in one iteration)
  - $\triangleright \quad \alpha$  too small: slow convergence
  - $\succ \quad \alpha$  too large: may not converge



#### **NEURAL NETWORKS (NNs)** Perceptron



 $x_{10}$ 

X =

- What makes NNs different from linear regression
- Defines the output of the neuron given an input
- "Mathematical gate" that filters which data passes to the next layer of neurons (should the neuron fire given this input?)

prediction

$$\mathbf{g}(z) = h_{\theta}(x) = \hat{y}$$



function

#### **Universal approximation theorem**

When the activation function is nonlinear, then a two layer NN can be proven to be a universal function approximator

n points, p features

 $x_{n0}$ 

 $\chi_3$ 



#### **FORWARD PROPAGATION**



Single layer neural network



#### New notation:

- **Superscript** = layer number
- **Subscript** = neuron number
- a = activation vector or unit
- q = activation function



multilayer network evaluates compositions of functions computed at individual neurons

**Hidden layer** 

**Output layer** 

#### FORWARD PROPAGATION



Single layer neural network





$$\boldsymbol{\theta}^{(0)} = \begin{bmatrix} \theta_{10}^{(0)} & \theta_{11}^{(0)} & \theta_{12}^{(0)} & \theta_{13}^{(0)} \\ \theta_{20}^{(0)} & \theta_{21}^{(0)} & \theta_{22}^{(0)} & \theta_{23}^{(0)} \\ \theta_{30}^{(0)} & \theta_{31}^{(0)} & \theta_{32}^{(0)} & \theta_{33}^{(0)} \end{bmatrix}$$

$$\boldsymbol{X} = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
neurons in input layer + bias

$$\boldsymbol{a}^{(1)} = \begin{bmatrix} a_0^{(1)} \\ g^{(0)}(\theta_{10}^{(0)}x_0 + \theta_{11}^{(0)}x_1 + \theta_{12}^{(0)}x_2 + \theta_{13}^{(0)}x_3) \\ g^{(0)}(\theta_{20}^{(0)}x_0 + \theta_{21}^{(0)}x_1 + \theta_{22}^{(0)}x_2 + \theta_{23}^{(0)}x_3) \\ g^{(0)}(\theta_{30}^{(0)}x_0 + \theta_{31}^{(0)}x_1 + \theta_{32}^{(0)}x_2 + \theta_{33}^{(0)}x_3) \end{bmatrix}$$

#### FORWARD PROPAGATION



Single layer neural network



#### **BACKPROPAGATION**



#### Single layer neural network

 $a_0^{(1)}$  $x_0$  $a_1^{(1)}$  $x_1$  $\hat{y}_1$  $a_2^{(1)}$  $\chi_2$  $\hat{y}_2$  $a_3^{(1)}$  $\chi_3$  $\theta^{(1)}$  $\theta^{(0)}$  $g^{(1)}$ 

We want to find the network weights that achieve the lowest loss

$$\boldsymbol{\theta}^* = argmin_{\theta} J(\boldsymbol{\theta})$$
  $\boldsymbol{\theta} = \{\theta^{(1)}, \theta^{(2)}\}$ 

#### 1. Gradient calculation:

$$\frac{\partial J(\boldsymbol{\theta})}{\partial \theta^{(1)}} = \frac{\partial J(\boldsymbol{\theta})}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial \theta^{(1)}} = g'^{(1)}(\theta^{(1)}a^{(1)})a^{(1)}$$

$$J(\theta) = \frac{1}{2}(\hat{y} - y)^2 = \frac{1}{2}(\hat{y}^2 + y^2 + 2\hat{y}y)$$

$$= \hat{y} - y$$
least squares
$$\frac{\partial J(\boldsymbol{\theta})}{\partial \theta^{(0)}} = \frac{\partial J(\boldsymbol{\theta})}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial \theta^{(0)}}$$

$$= g'^{(0)}(\theta^{(0)}X)X$$

$$= g'^{(1)}(\theta^{(1)}a^{(1)}) \theta^{(1)}$$

#### 2. Weight update:

$$\theta^{(0)} \coloneqq \theta^{(0)} - \alpha \frac{\partial J(\theta^{(0)}, \theta^{(1)})}{\partial \theta^{(0)}} \quad \text{obstance}$$

$$\theta^{(1)} \coloneqq \theta^{(1)} - \alpha \frac{\partial J(\theta^{(0)}, \theta^{(1)})}{\partial \theta^{(1)}} \quad \text{obstance}$$

#### STOCHASTIC GRADIENT DESCENT

#### How much computational time does it take to calculate the gradients?

$$\sum_{i=1}^{n} (h_{\theta}(x_i) - y_i)^2 = J(\theta_k)$$

$$n \text{ terms}$$

$$\vec{\theta} \coloneqq \vec{\theta} - \alpha \nabla J(\theta_k)$$
Calculate gradient  $p$  times

- Number of points n
- Number of features p

- lel features
- = 1e5 computations

In stochastic gradient descent (SGD) the gradient is approximated by a gradient at a single sample:

Randomly shuffle samples in the data set for i = 1, ..., n do:

$$\vec{\theta} \coloneqq \vec{\theta} - \alpha \, \nabla J(\theta_k)$$

More than one training example at each step = mini batch

## **NEURAL NETWORKS Activation functions**

### Differentiable, quickly converging wrt the weights

\* There are also radial basis functions (RBF) which are efficient as universal function approximators (Gaussian, multiquadratics)

| Name ÷                                                   | Plot | Function, $g(x)$ $\qquad \qquad \Leftrightarrow \qquad $      | Derivative of $g, g'(x)$ $\Rightarrow$                                                                                            |
|----------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Identity                                                 | _/_  | x                                                                                                                                                                      | 1                                                                                                                                 |
| Binary step                                              |      | $\begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } x \ge 0 \end{cases}$                                                                                             | $\begin{cases} 0 & \text{if } x \neq 0 \\ \text{undefined} & \text{if } x = 0 \end{cases}$                                        |
| Logistic, sigmoid, or soft step                          |      | $\sigma(x) \doteq rac{1}{1+e^{-x}}$                                                                                                                                   | g(x)(1-g(x))                                                                                                                      |
| Hyperbolic tangent (tanh)                                |      | $\tanh(x) \doteq \frac{e^x - e^{-x}}{e^x + e^{-x}}$                                                                                                                    | $1-g(x)^2$                                                                                                                        |
| Rectified linear unit (ReLU) <sup>[8]</sup>              |      | $(x)^{+} \doteq \begin{cases} 0 & \text{if } x \leq 0 \\ x & \text{if } x > 0 \end{cases}$<br>= $\max(0, x) = x 1_{x > 0}$                                             | $\begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } x > 0 \\ \text{undefined} & \text{if } x = 0 \end{cases}$                   |
| Gaussian Error Linear Unit (GELU) <sup>[5]</sup>         | 1/   | $\frac{1}{2}x\left(1+\operatorname{erf}\left(\frac{x}{\sqrt{2}}\right)\right)$ $=x\Phi(x)$                                                                             | $\Phi(x) + x\phi(x)$                                                                                                              |
| Softplus <sup>[9]</sup>                                  |      | $\ln(1+e^{\pi})$                                                                                                                                                       | $\frac{1}{1+e^{-x}}$                                                                                                              |
| Exponential linear unit (ELU) <sup>[10]</sup>            |      | $\begin{cases} \alpha \left( e^x - 1 \right) & \text{if } x \leq 0 \\ x & \text{if } x > 0 \end{cases}$ with parameter $\alpha$                                        | $\begin{cases} \alpha e^x & \text{if } x < 0 \\ 1 & \text{if } x > 0 \\ 1 & \text{if } x = 0 \text{ and } \alpha = 1 \end{cases}$ |
| Scaled exponential linear unit (SELU) <sup>[11]</sup>    |      | $\lambda \begin{cases} \alpha(e^{v}-1) & \text{if } x<0 \\ x & \text{if } x\geq 0 \\ & \text{with parameters } \lambda=1.0507 \text{ and } \alpha=1.67326 \end{cases}$ | $\lambda \begin{cases} \alpha e^x & \text{if } x < 0 \\ 1 & \text{if } x \ge 0 \end{cases}$                                       |
| Leaky rectified linear unit (Leaky ReLU) <sup>[12]</sup> |      | $\begin{cases} 0.01x & \text{if } x < 0 \\ x & \text{if } x \ge 0 \end{cases}$                                                                                         | $\begin{cases} 0.01 & \text{if } x < 0 \\ 1 & \text{if } x \ge 0 \\ \text{undefined} & \text{if } x = 0 \end{cases}$              |

#### **NEURAL NETWORKS**

#### Vanishing gradients

appear in backpropagation using gradientbased methods in deep networks



Maximum of gradient 0.25 With chain rule the gradient product can become very small

$$\frac{\partial J(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}^{(0)}} = \frac{\partial J(\boldsymbol{\theta})}{\partial \hat{\boldsymbol{y}}} \frac{\partial \hat{\boldsymbol{y}}}{\partial \boldsymbol{a}^{(1)}} \dots \frac{\partial \boldsymbol{a}^{(l)}}{\partial \boldsymbol{\theta}^{(0)}}$$

$$0.2\times0.15\times0.22\times0.09\dots$$

When the partial derivative vanishes the weights are not updated anymore

$$\vec{\theta} \coloneqq \vec{\theta} - \alpha \, \nabla J(\theta_k)$$

#### good for hidden layers





saturated

10.0

MLDOODLES.COM

Very narrow range, small values

1.00

0.75

-0.75

-1.00

tanh

gradient of tanh

-5.0

-7.5

#### **NOTE ON OPTIMIZERS IN NNs**



Gradient based methods (first order):

- Gradient descent
- momentum
- AdaGrad
- RMSProp
- Adam

dynamic adjustment of algorithm parameters

#### **NOTE ON OVERFITTING**







Improves generalization on useen data by constraining the optimization problem to discourage complex models

- Regularization term in loss function (penalty or shrinkage term, L1, L2)
- **Dropout**: not relying on certain nodes that only learn certain patterns (e.g., set 50% of activations to 0 during training)
- **Early stopping**: stop training before overfitting
- **Batch normalization**: normalizing each activation value using the batch  $(\mu, \sigma)$



Test for overfitting with independent test dataset

→ Difference in loss = generalization error

#### **COMPUTATIONALLY EFFICIENT FOR BIG DATA!**



#### SO WHAT'S THE RECIPE?

- 1. Select data features + perform data scaling
- 2. Choose network architecture
- 3. Choose <u>activation function</u> for each layer
- 4. Choose loss function & convergence criteria
- 5. Choose an optimizer & set its hyperparameters
- 6. Choose number of epochs to train
- 7. Decide on <u>regularization</u> techniques
- 8. Perform forward propagation
- 9. Compute gradients with backwards propagation
- 10. Update weights & keep track of loss



#### **LET'S TRY IT!**

- Click <u>here</u>
- Why is the example not working?
- How can you solve that?
- Try different activation functions





# Thank you for your attention!

# What questions do you have for me?

https://ml-cheatsheet.readthedocs.io/

https://buildmedia.readthedocs.org/media/pdf/ml-cheatsheet/latest/ml-cheatsheet.pdf



Let's connect! andrea.santamaria@kit.edu / @ansantam

Highly non-convex loss of ResNet-56 without skip connections [arxiv:1712.09913]

#### NOTE ON LOSS FUNCTION FOR CLASSIFICATION

#### Maximum likelihood estimation (MLE)

- $\vec{x} = \text{random sample from unknown joint probability distribution } p(\vec{y}|\vec{x}; \vec{\theta})$  ————
- $\vec{\theta}$  = parametrization of p
- Optimal  $\vec{\theta}$  value can be estimated by maximizing a likelihood function:

$$\mathcal{L}(\theta) = \prod_{i=1}^{n} p\left(y_i | x_i; \theta_i\right) \rightarrow \underset{\text{observations}}{\operatorname{argmax}_{\theta}} \mathcal{L}(\theta)$$

Most NNs use the negative log-likelihood as loss function:  $J(\theta) = -\ln(\mathcal{L}(\theta))$ 

$$J(\theta) = -\ln(\mathcal{L}(\theta))$$

cross-entropy between the training data and model distribution

probability of y given x

and  $\theta$  (conditional

probability)



Thanks to machine-learning algorithms, the robot apocalypse was short-lived.