SKIT

Karlsruhe Institute of Technology

Introduction to
Artificial Neural Networks

C’mon, we all know
where this is heading.
It’s machine Llearning’s
biggest sensation
nowadays: neural
networks!

Andrea Santamaria Garcia
Laboratory for Applications of Synchrotron Radiation (KIT-LAS)
07/09/2022

Yes, it’s true.
And yes, a lot of the
examples we gave can
only be done with
neural nets...

But taking
themonisa
big step!

Grr.
It’s locked.

Artificial
neural networks
are powerful tools,
but they can eat up
time and money.

Depending
on the task,
you might not
NEED one!

2 Andrea Santamaria Garcia

Want to sort
messages, for example?
A naive Bayes classifier
is super fast and much
cheaper than most

neural nets.

Gotta make
hiring choices? A lot
of people still use
decision trees.

to review!

Comic source: https://cloud.google.com/products/ai/ml-comic-1

https://cloud.google.com/products/ai/ml-comic-1

machines are powerful classifiers!

Ooh, ooh, and support vector

Who
doesn’t
love a wide

margin?

Andrea Santamaria Garcia

I still wanna LEARN about neural
networks, because... because they...

Because
they’re cool ?

...because
they’re cool.

They ARE
pretty cool!

Comic source: https://cloud.google.com/products/ai/ml-comic-1

https://cloud.google.com/products/ai/ml-comic-1

UNIVARIATE LINEAR REGRESSIONcaciion)

Simple (one feature)
We want to fit linearly a set of points (x;, v;)

continuous: regression problem

Hypothesis function: hy(x;) = 9i h: @e@(discrete: classification problem

Estimated from data weights Space of input vanables Space of output variables
- regression coefficients = featu re = eStImated Value
- parameters of the model independent variable - dependent variable

- scalar response

M u Iti ple (several features)

n,p i=1,..,n datapoints Polynomial
k=1,..p features
he (x) = + Z ek (.bk (Xl) Xjo =1 pseudo-variable/ gb(x) = (xO, x1’ xZ, T xp)
i, k=1 ¢r(x;) = xj) basis function _ .
bias Fits a non.llnea.r m‘odel tp the
data, but it's still linear in the

parameters 6 of the model

1 1 — T — T —
Matrix notation hg(x) =0"x =x"0 =)I(H —

Andrea Santamaria Garcia mMx(@+D]x[(p+1)x1] bpiasincluded

UNIVARIATE LINEAR REGRESSION B
LOSS (COSt) f"“Ction = minimization problem

Goal: choose 6, such that /1, (x;) is as close to y; as possible 7g(x;) —y; =
N\

y

residual

error/disturbance/noise

Assumption:
observations (x;, ;) = result of random deviations
(i ¥i) , ,

normal

] L1 1
Xo X1X2 X3 X4

Reasonable choice that works well for many
Least Squares

regression problems (desirable properties)

loss (cost) function

Find the analytical minimum of:

* Takes an average difference of the

n n predictions of the hypothesis
§ 2 _ § N\ — A)2 — _ 2 + “Intuitive” number to represent
ri - (h9 (xl) y l) - |y X0 | deviation from target
i=1 i=1 * Measures of performance of a model

Andrea Santamaria Garcia

UNIVARIATE LINEAR REGRESSION

Loss functions - least squares J(9)

Scan of hypothesis

Calculation of loss

/\ Use least squares when:

* System is overdetermined
* Points > features (n >p + 1)

* Uncertainties in the data are “controlled"
» Otherwise: maximum likelihood estimation, ridge
regression, lasso regression, least absolute deviation,
bayesian linear regression, etc.

Residual Sum of Squares
250 300 350 400 450 500 550
@

Least Squares

Find the analytical minimum of:

n n
Yt =) (he(x) = yi)*= Iy - X6I?
i=1 =1

Andrea Santamaria Garcia Animation from: https://yihui.org/animation/example/least-squares/

| | | | |
0 10 20 30 40 50 ()

Intercept = -5

https://yihui.org/animation/example/least-squares/

OPTIMIZERS

Example: gradient descent

Algorithm to iteratively solve argming J(6y)

first order

- - l_‘_\
6 =0 —(@V](6)
tep s '
Step s1z€ take repeated steps in the opposite
learning rate direction of the gradient
s 0(00,6)) 1<
Y1
/L a—go=;lZ(90+91xi—}’i)
}-; =1
= 2 9006 _1X
S Sa) T =E2xi(00+91xi—3’i)
e Nu + 1 i=1
o
— |§1 A 9/ (60, 61)
|| 90 = 90 ——
/IL - a6, updated
§ S o d](0y,0,) | simultaneously
= S|RTEh e

Andrea Santamaria Garcia

)

= Depending on the initial (8, ;) optimization can end
up at different points

= |f the loss function is not strictly convex and saddle points
exist finding the global minimum is not guaranteed

= Works in any number of dimensions

= lteratively (this example): O(features .points?)
= Analitycally (normal equation): O(points?®)

matrix inversion

Animation from Wikimedia commons

https://commons.wikimedia.org/wiki/File:Gradient_descent.gif

OPTIMIZERS

Feature scaling Learning rate
= Optimizers can converge faster if the features are on = The optimizer is working correctly if the loss decreases
a similar scale after every iteration
= Becomes very importantin polynomial regression: = Usual to declare convergence tests (e.g., declare

convergence when J (6) decreases by less than 1073 in
one iteration)

> atoo small: slow convergence

> atoo large: may not converge

Oo + 0,x + 0,x% + 053

= Normalization: =1 <x; <1 or 0<x; <1
» Standardization:y =0, o%2=1
\

/
A A J(8)
6 04

Conver, Sence
| | | | |

100 200 300 400 500
0o 6, iterations

S
e

v

\ 4

Andrea Santamaria Garcia

NEURAL NETWORKS (NNs)
Perceptron

input

bias

~

Andrea Santamaria Garcia

variable that captures the

invariant part of the prediction

/ « What makes NNs different
from linear regression

S

activation * Defines the output of the
functi — neuron given an input
unction + “Mathematical gate” that

neuron

n,p

Z:00+

i,k=1

computational unit

1. Weighted sum

kaik = BX

filters which data passes to
the next layer of neurons
(should the neuron fire
given this input?)

_— prediction

n points, p features

xlp XY an \xp

2. Activation function

g(2)

=>g(z) =hy(x) =3

-()-| Universal approximation theorem

When the activation function is nonlinear,
then a two layer NN can be proven to be a
universal function approximator

we don’t know how the data points n will be fed at a time (batches)

NEURAL NETWORKS (NNSs) 1

classes={green, black}

introduces nonlinearities
Perceptron to approximate arbitrarily
bias variable that captures the complex functions

invariant part of the prediction

X0
AN neuron

computational unit

N2

1. Weighted sum . o
B i discrete: classification problem
/

z=0X

probabilities between O and 1
: of belonging to a specific class
2. Activation function (logistic regression)

g(2)

continuous: regression problem

e

X3 weights and biases * __ .
are randomly 0" = argming] (0)

initialized iteratively update the weights

10 Andrea Santamaria Garcia

New notation:

* Superscript = layer number
* Subscript = neuron number
e @ = activation vector or unit

FORWARD PROPAGATION !
Single layer neural network

X0 agl) « g = activation function
(1)
X1 al Z(Z)
1
V1 | aV |
1 N ~ f 1
X5 al? 9 = gD O g@ X))
~ 7D
Y2
(1) multilayer network evaluates compositions of
X3 a; functions computed at individual neurons
g(O) g(l)
Input layer Hidden layer Output layer

1 Andrea Santamaria Garcia

FORWARD PROPAGATION !
Single layer neural network

X0 a(()l)

X1 agl)
Y1

X2 agl)
Y2

X3 agl)

g(O) g(l)
Input layer Hidden layer Output layer

12 Andrea Santamaria Garcia

7(2)
1
f \
a®
5 — (1)) (9 ‘
7D
ok
g
(0) (0) [(0) [(0)
010 011 012" 015 5
N PIONIORIOR O i X
01 = 030 021" 037 033 g X = x;
[
050’ 01 635 0531] ¢ %3
|)

a® =

|
neurons in input layer + bias

0 0 0 0
g© (Hl(o)xo + 91(1)x1 + Hl(z)xz + 81(3)x3)

0 0 0 0
gOOPx0 + 6% + 659 x, + 652 x3)

0 0 0 0
[g@ O %0 + 0%, + 602 x, + 65 x3) |

(2)
Z
FORWARD PROPAGATION ! , T
Single layer neural network 4
s 1 1 0 0
. » 9 =gWEMg4()(9()X))
0 \ a'() \ Z(l)
1
X1 al®
— (1)_
- W 4 Hm L7 2 & %o
V1 (D) — [910 011" 012" 015] g3) agl)
X ey 630 051 057 053 ¥ I PO
2 L Y) (@]
2 neurons in hidden : _agl)_
5} layer + bias
2
X a(l) (1) (1) 1 (1) 1 (@) 1 @)
3 3 a® =9 = 9(1)(910 ay +0;,a; + 0,0, + 6,37 a37)
o o S EDD + 6D 4 60 o 1 6 ol
Input layer Hidden layer Output layer

13 Andrea Santamaria Garcia

BACKPROPAGATION
Single layer neural network
X0 ac()l)
Xq agl)
1
X2 agl)
V2
X3 agl)
g(O) g(l)
14 Andrea Santamaria Garcia

We want to find the network weights that
achieve the lowest loss

6 ={00,6@)

0" = argming J(0)

1. Gradient calculation:

9J(0) _(OJON 0 \ _ 1) (g0 gy
LZASY, oy oo™

I J(6) = 39 —y)?=5 (9% +y* + 29y)
least squares

— g'(O)(Q(O)X)X

= gW @D gDy gV

a](g(O)’ 9(1))
00

3] (6@,
a6

g .= g _ o

2. Weight update:

9(1) = 9(1) 4

gradient descent

repeat until approx.

15

STOCHASTIC GRADIENT DESCENT
How much computational time does it
take to calculate the gradients?

D (o) = 7= J8)) 6:=0-avj6)
=1 J Y
' Calculate
n terms

gradient p times

In stochastic gradient descent (SGD) the gradient is
approximated by a gradient at a single sample:

* Number of points n
* Number of features p

» le4 points
» lel features

= 1e5 computations

each step = mini batch

. Randomly shuffle samples in the data set
% fori=1,..,ndo: More than one training example at
- 6:=6—avV(6)

Andrea Santamaria Garcia

Image from wikipedia

NEURAL NETWORKS
Activation functions

Name

Identity

Binary step

Logistic, sigmoid, or soft step
Hyperbolic tangent (tanh)

Rectified linear unit (ReLU)"®!

Gaussian Error Linear Unit (GELU)™!
Softplus'®!

Exponential linear unit (ELU)!"®)

Scaled exponential linear unit (SELU)!"!)

Leaky rectified linear unit (Leaky ReLU)!"?!

Andrea Santamaria Garcia

Differentiable, quickly
converging wrt the weights

s Plot Function, g(z)
/ z
[0 ifz<0
| 1 ifz>0
_— .1
=7 @)= 1=

11) e —e %
/ tanh(x) = et +e”

+.JO0 ifz<0
/ (=) _{a: ifz>0

= max(0,2) = 21,5

w(+(3))

=zd(z)

1 // In(1 + &%)
Tz (o

with parameter c

A ale* —1) ifz<0
T ifz >0

with parameters A = 1.0507 and @ = 1.67326

001z ifz<0
o ife>0

*There are also radial basis functions (RBF)
which are efficient as universal function
approximators (Gaussian, multiquadratics)

Derivative of g, g'(z) ¢

0 ifz#0
undefined ifz =0

9(x)(1 - g(z))

1-g(z)®

0 ife <0
1 ifz>0
undefined ifz =0
®(z) + z¢(x)
_4

l+e®

ae® ifz<0

1 ifz>0

1 fz=0anda=1
A ae® ifz <0

1 ifz>0
0.01 ifz <0
1 ife >0
undefined ifz =0

Image from wikipedia

NEURAL NETWORKS

appear in backpropagation using gradient-

VaniShing gradients based methods in deep networks

Sigmoid and its gradient

not goodin hidden layers

10 1 — sigmoi : :
grgadle:t of sigmoid e MaX|mum Of grad|ent 025

i With chain rule the gradient When ’Fhe partial derivative vanishes
_ 0 product can become very small the weights are not updated anymore
s d - -
5 o <4——goodfrange——» a](e) a](e) 65; aa(l) 0 = 8 —Qa v](gk)

22 90 99 9a® 900

close to 0
0| - e 0.2 X 0.15 x 0.22 % 0.09 ...
-100 -75 -50 -25 00 25 50 75 100 good for hidden layers
input MLDOODLES.COM - -
Tanh and its gradient 304 ReLU and ts gradient

100 1 — tanh saturated I grerLudient of relu

075 gradient of tanh 25 A

050 20

025 5

E oo | deseres —close 00 Very narrow range, th
025 | _— small values 101
~0.50 - !
05 1
e saturated 00
-100 -75 -50 -25 00 25 50 75 100 - - - 0 ! 2 ¥

input
input MLDOODLES.COM P

Andrea Santamaria Garcia Images from mldoodles

https://mldoodles.com/vanishing-gradients/

NOTE ON OPTIMIZERS IN NNs

Gradient based methods (first order):

= momentum

=BAdaGrad dynamic adjustment of
= RMSProp algorithm parameters
= Adam

18 Andrea Santamaria Garcia Animation from Lili Jiang

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

NOTE ON OVERFITTING

Underfit Good fit Overfit
N\ A N\
[J
[J
[J -~ 2 3 4
}7:60+01X 9:90+81X+02x2 y=90+31x+92x +93X +64X
Test for overfitting with independent test dataset
- - - Difference in loss = generalization error
Regularization

Improves generalization on useen data by constraining the
optimization problem to discourage complex models

= Regularization term in loss function (penalty or shrinkage term, L1, L2)

= Dropout: not relying on certain nodes that only learn certain patterns (e.g., set
50% of activations to 0 during training)

= Early stopping: stop training before overfitting

= Batch normalization: normalizing each activation value using the batch (i, o)

19 Andrea Santamaria Garcia

COMPUTATIONALLY EFFICIENT FOR EIG DATA!

Sorry to bring us crashing back to earth, but do |
seriously need some freaky, calculus-filled energy
landscape just to price TWENTY DUMB HOUSES
WITH ONE FEATURE EACH?

BUT what if there are
20 MILLION houses with
200 features each?!

[/
Comic source: https://cloud.google.com/products/ai/ml-comic-1

20 Andrea Santamaria Garcia

https://cloud.google.com/products/ai/ml-comic-1

SO WHAT’S THE RECIPE?

1. Select data features + perform data scaling

2. Choose network architecture

3. Choose activation function for each layer

4. Choose loss function & convergence criteria

5. Choose an optimizer & set its hyperparameters
6

7

8

9

1

. Choose number of epochs to train
. Decide on regularization techniques

. Perform forward propagation
. Compute gradients with backwards propagation
0. Update weights & keep track of loss

21 Andrea Santamaria Garcia

22

LET’S TRY IT!

e Click here

« Whyis the example not working?
* How can you solve that?
e Try different activation functions

Sigmoid and its gradient

10 1 — sigmoid
gradient of sigmoid
08
06 1
H
‘g‘ <4——goodfrange——»
04
0.2 N
close to 0 \
saturated il
0.0 -

saturated

closeto 0

-100 -75 -50 -25 00 25 50
input

Andrea Santamaria Garcia

DOODLES.C

oM

output

-0.25
-0.50
-0.75

-1.00

Tanh and its gradient

- tanh
gradient of tanh

saturated

close to 0 close to 0
saturated
-100 -75 -50 -25 00 25 50 75 100

input

MLDOODLES.COM

https://playground.tensorflow.org/

23

Thank you for
your attention!

What questions do you

have for me?

https://ml-cheatsheet.readthedocs.io/

https://buildmedia.readthedocs.org/media/pdf/
ml-cheatsheet/latest/ml-cheatsheet.pdf

Let's connect! andrea.santamaria@kit.edu / @ansantam

Andrea Santamaria Garcia

Highly non-convex loss of ResNet-56 without skip connections [arxiv:1712.09913]

All'icons from this talk from TheNounProject

https://ml-cheatsheet.readthedocs.io/
https://arxiv.org/pdf/1712.09913.pdf
https://buildmedia.readthedocs.org/media/pdf/ml-cheatsheet/latest/ml-cheatsheet.pdf
mailto:andrea.santamaria@kit.edu
https://twitter.com/ansantam

NOTE ON LOSS FUNCTION FOR CLASSIFICATION

Maximum likelihood estimation (MLE)

. 5 - . S22 bability of y gi
X = random sample from unknown joint probability distribution p(¥|X; 8) ond 6 (conditional
« 6 = parametrization of p probability)
« Optimal 8 value can be estimated by maximizing a likelihood function:
n

t@) =] |poilon - argmaxy £0)

i=1 forindependent

observations
cross-entropy between the

Most NNs use the negative log-likelihood as loss function: J(8) = —In(L(6)) training data and model
distribution

24 Andrea Santamaria Garcia

25

Andrea Santamaria Garcia

THAT WAS SURPRISINGLY
EASY. HOW COME THE
ROBOTIC UPRISING LUSED
SPEARS AND ROCKS
INSTEAD OF MISSILES
AND LASERS?

IF YOU LOOK TO
HISTORICAL DATA,
THE VAST MAJORITY
OF BATTLE-WINNERS
USED PRE-MODERN

Y

WEAPONRY.

Thanks to machine-learning algorithms,
the robot apocalypse was short-lived.

https://www.smbc-comics.com/comic/rise-of-the-machines

https://www.smbc-comics.com/comic/rise-of-the-machines

