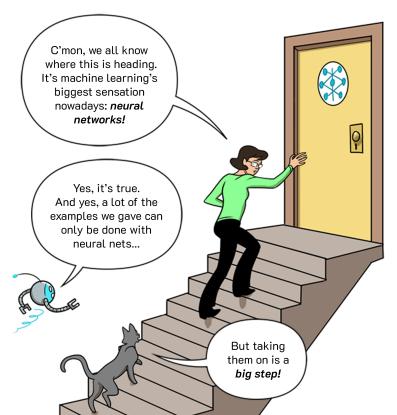


Introduction to Artificial Neural Networks

Andrea Santamaría García

Laboratory for Applications of Synchrotron Radiation (KIT-LAS) 07/09/2022



UNIVARIATE LINEAR REGRESSION (one prediction)

Simple (one feature)

We want to fit linearly a set of points (x_i, y_i)

Hypothesis function: $h_{\theta}(x_i) = \theta_0 + (\theta_1)x_i$

weights Estimated from data -

- regression coefficients
- parameters of the model

Space of input variables

= feature

independent variable

<u>continuous</u>: regression problem <u>discrete</u>: classification problem

Space of output variables

= estimated value

- dependent variable
- scalar response

Multiple (several features)

$$h_{\theta}(x) = \underbrace{\theta_0}_{i, k=1} + \sum_{i, k=1}^{n, p} \theta_k \phi_k(x_i) = \begin{cases} i = 1, \dots, n & \text{data points} \\ k = 1, \dots, p & \text{features} \\ x_{i0} = 1 & \text{pseudo-variable} \\ \phi_k(x_i) = x_{ik} & \text{basis function} \end{cases}$$

Polynomial

$$\phi(x)=(x^0,x^1,x^2,\cdots,x^p)$$

Fits a nonlinear model to the data, but it's still linear in the parameters θ of the model

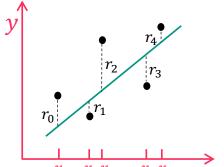
Matrix notation $h_{\theta}(x) = \theta^T x = x^T \theta = X\theta$

 $[n \times (p+1)] \times [(p+1) \times 1]$ bias included

UNIVARIATE LINEAR REGRESSION

Loss (cost) function

Goal: choose θ_k such that $h_{\theta}(x_i)$ is as close to y_i as possible $h_{\theta}(x_i) - y_i = r_i$



Assumption:

observations (x_i, y_i) = result of random deviations

Least Squares

Reasonable choice that works well for many regression problems (desirable properties)

Find the analytical minimum of:

$$\sum_{i=1}^{n} r_i^2 = \sum_{i=1}^{n} (h_{\theta}(x_i) - y_i)^2 = |\mathbf{y} - \mathbf{X}\boldsymbol{\theta}|^2 = J(\theta_k)$$

loss (cost) function

- Takes an average difference of the predictions of the hypothesis
- "Intuitive" number to represent deviation from target
- · Measures of performance of a model

as small as possible

= minimization problem

residual

error/disturbance/noise

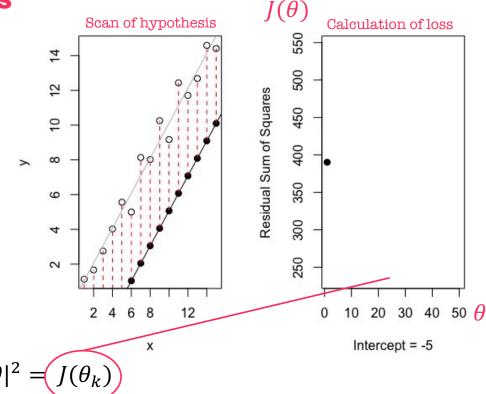
UNIVARIATE LINEAR REGRESSION

Loss functions - least squares

- System is overdetermined
 - Points > features (n > p + 1)
- Uncertainties in the data are "controlled"
 - > Otherwise: maximum likelihood estimation, ridge regression, lasso regression, least absolute deviation, bayesian linear regression, etc.

Find the analytical minimum of:

$$\sum_{i=1}^{n} r_i^2 = \sum_{i=1}^{n} (h_{\theta}(x_i) - y_i)^2 = |\mathbf{y} - \mathbf{X}\boldsymbol{\theta}|^2 = J(\theta_k)$$



OPTIMIZERS

Example: gradient descent

Algorithm to <u>iteratively</u> solve $argmin_{\theta} J(\theta_k)$

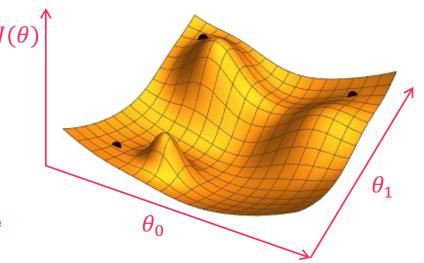
$$\vec{\theta} \coloneqq \vec{\theta} - \alpha \nabla J(\theta_k)$$
 step size take repeated steps in the opposite direction of the gradient

$$\frac{\partial J(\theta_0, \theta_1)}{\partial \theta_0} = \frac{1}{n} \sum_{i=1}^{n} (\theta_0 + \theta_1 x_i - y_i)$$

$$\frac{\partial J(\theta_0, \theta_1)}{\partial \theta_1} = \frac{1}{n} \sum_{i=1}^{n} x_i (\theta_0 + \theta_1 x_i - y_i)$$

$$\theta_0 := \theta_0 - \alpha \frac{\partial J(\theta_0, \theta_1)}{\partial \theta_0}$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial J(\theta_0, \theta_1)}{\partial \theta_1}$$
updated simultaneously



- Depending on the initial (θ_0, θ_1) optimization can end up at different points
- If the loss function is not strictly convex and saddle points exist <u>finding the global minimum is not guaranteed</u>
- Works in any number of dimensions
- Iteratively (this example): $\mathcal{O}(features . points^2)$
- Analitycally (normal equation): $O(points^3)$

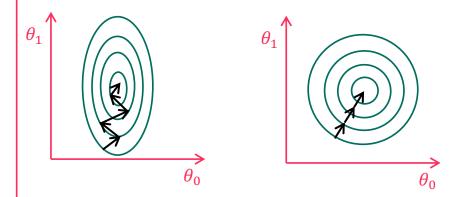
OPTIMIZERS

Feature scaling

- Optimizers can converge faster if the features are on a similar scale
- Becomes very important in polynomial regression:

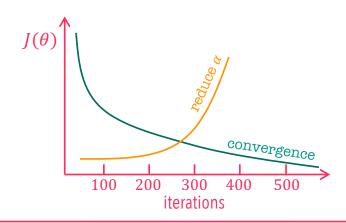
$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3$$

- Normalization: $-1 \le x_i \le 1$ or $0 \le x_i \le 1$
- Standardization: $\mu = 0$, $\sigma^2 = 1$

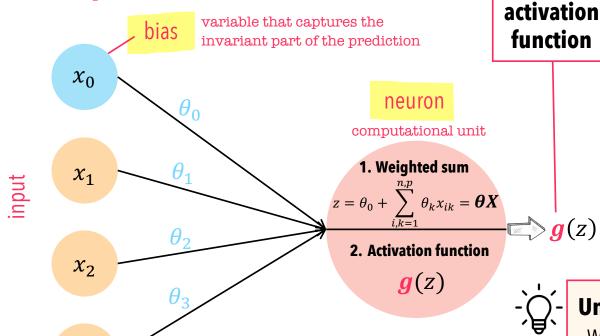


Learning rate

- The optimizer is working correctly if the loss decreases after every iteration
- Usual to **declare convergence tests** (e.g., declare convergence when $J(\theta)$ decreases by less than 10^{-3} in one iteration)
 - $\triangleright \quad \alpha$ too small: slow convergence
 - $\succ \quad \alpha$ too large: may not converge



NEURAL NETWORKS (NNs) Perceptron



 x_{10}

X =

- What makes NNs different from linear regression
- Defines the output of the neuron given an input
- "Mathematical gate" that filters which data passes to the next layer of neurons (should the neuron fire given this input?)

prediction

$$\mathbf{g}(z) = h_{\theta}(x) = \hat{y}$$

function

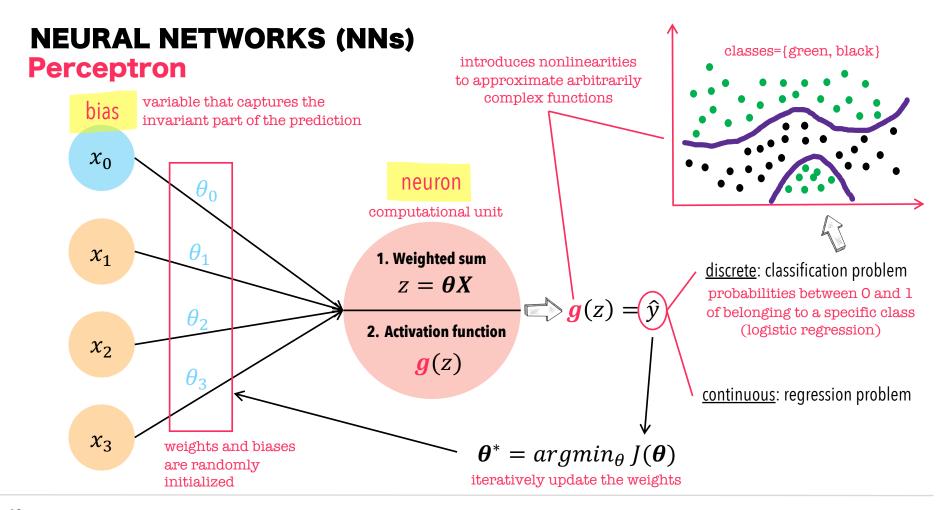
Universal approximation theorem

When the activation function is nonlinear, then a two layer NN can be proven to be a universal function approximator

n points, p features

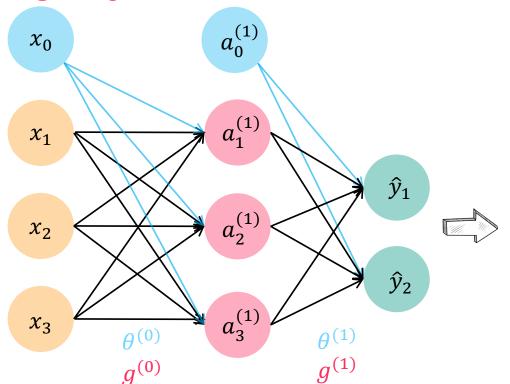
 x_{n0}

 χ_3



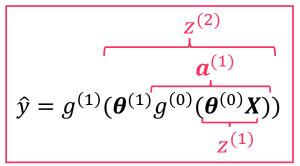
FORWARD PROPAGATION

Single layer neural network



New notation:

- **Superscript** = layer number
- **Subscript** = neuron number
- a = activation vector or unit
- q = activation function



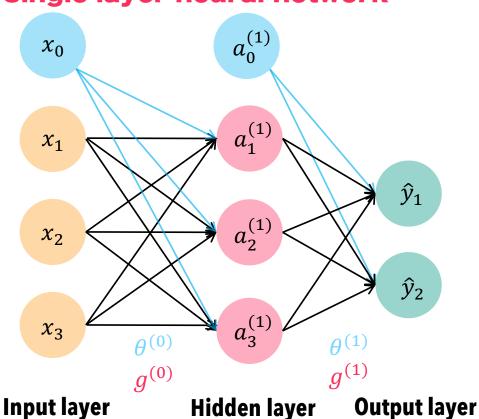
multilayer network evaluates compositions of functions computed at individual neurons

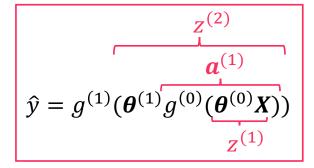
Hidden layer

Output layer

FORWARD PROPAGATION

Single layer neural network





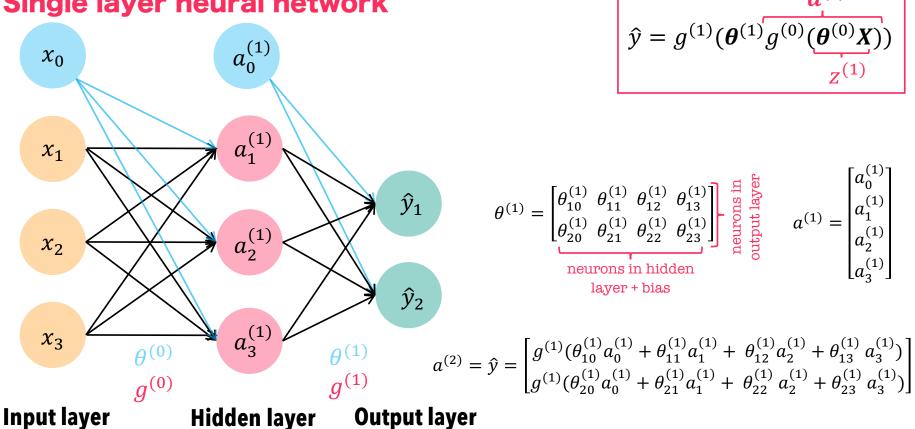
$$\boldsymbol{\theta}^{(0)} = \begin{bmatrix} \theta_{10}^{(0)} & \theta_{11}^{(0)} & \theta_{12}^{(0)} & \theta_{13}^{(0)} \\ \theta_{20}^{(0)} & \theta_{21}^{(0)} & \theta_{22}^{(0)} & \theta_{23}^{(0)} \\ \theta_{30}^{(0)} & \theta_{31}^{(0)} & \theta_{32}^{(0)} & \theta_{33}^{(0)} \end{bmatrix}$$

$$\boldsymbol{X} = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
neurons in input layer + bias

$$\boldsymbol{a}^{(1)} = \begin{bmatrix} a_0^{(1)} \\ g^{(0)}(\theta_{10}^{(0)}x_0 + \theta_{11}^{(0)}x_1 + \theta_{12}^{(0)}x_2 + \theta_{13}^{(0)}x_3) \\ g^{(0)}(\theta_{20}^{(0)}x_0 + \theta_{21}^{(0)}x_1 + \theta_{22}^{(0)}x_2 + \theta_{23}^{(0)}x_3) \\ g^{(0)}(\theta_{30}^{(0)}x_0 + \theta_{31}^{(0)}x_1 + \theta_{32}^{(0)}x_2 + \theta_{33}^{(0)}x_3) \end{bmatrix}$$

FORWARD PROPAGATION

Single layer neural network



BACKPROPAGATION

Single layer neural network

 $a_0^{(1)}$ x_0 $a_1^{(1)}$ x_1 \hat{y}_1 $a_2^{(1)}$ χ_2 \hat{y}_2 $a_3^{(1)}$ χ_3 $\theta^{(1)}$ $\theta^{(0)}$ $g^{(1)}$

We want to find the network weights that achieve the lowest loss

$$\boldsymbol{\theta}^* = argmin_{\theta} J(\boldsymbol{\theta})$$
 $\boldsymbol{\theta} = \{\theta^{(1)}, \theta^{(2)}\}$

1. Gradient calculation:

$$\frac{\partial J(\boldsymbol{\theta})}{\partial \theta^{(1)}} = \frac{\partial J(\boldsymbol{\theta})}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial \theta^{(1)}} = g'^{(1)}(\theta^{(1)}a^{(1)})a^{(1)}$$

$$J(\theta) = \frac{1}{2}(\hat{y} - y)^2 = \frac{1}{2}(\hat{y}^2 + y^2 + 2\hat{y}y)$$

$$= \hat{y} - y$$
least squares
$$\frac{\partial J(\boldsymbol{\theta})}{\partial \theta^{(0)}} = \frac{\partial J(\boldsymbol{\theta})}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial a^{(1)}} \frac{\partial a^{(1)}}{\partial \theta^{(0)}}$$

$$= g'^{(0)}(\theta^{(0)}X)X$$

$$= g'^{(1)}(\theta^{(1)}a^{(1)}) \theta^{(1)}$$

2. Weight update:

$$\theta^{(0)} \coloneqq \theta^{(0)} - \alpha \frac{\partial J(\theta^{(0)}, \theta^{(1)})}{\partial \theta^{(0)}} \quad \text{obstance}$$

$$\theta^{(1)} \coloneqq \theta^{(1)} - \alpha \frac{\partial J(\theta^{(0)}, \theta^{(1)})}{\partial \theta^{(1)}} \quad \text{obstance}$$

STOCHASTIC GRADIENT DESCENT

How much computational time does it take to calculate the gradients?

$$\sum_{i=1}^{n} (h_{\theta}(x_i) - y_i)^2 = J(\theta_k)$$

$$n \text{ terms}$$

$$\vec{\theta} \coloneqq \vec{\theta} - \alpha \nabla J(\theta_k)$$
Calculate gradient p times

- Number of points n
- Number of features p

- lel features
- = 1e5 computations

In stochastic gradient descent (SGD) the gradient is approximated by a gradient at a single sample:

Randomly shuffle samples in the data set for i = 1, ..., n do:

$$\vec{\theta} \coloneqq \vec{\theta} - \alpha \, \nabla J(\theta_k)$$

More than one training example at each step = mini batch

NEURAL NETWORKS Activation functions

Differentiable, quickly converging wrt the weights

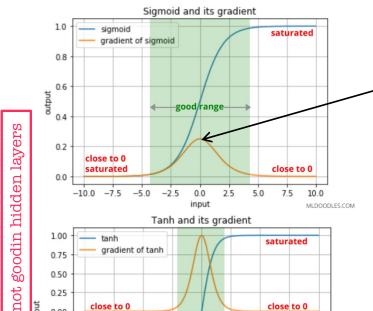
* There are also radial basis functions (RBF) which are efficient as universal function approximators (Gaussian, multiquadratics)

Name ÷	Plot	Function, $g(x)$ $\qquad \qquad \Leftrightarrow \qquad $	Derivative of $g, g'(x)$ \Rightarrow
Identity	_/_	x	1
Binary step		$\begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } x \ge 0 \end{cases}$	$\begin{cases} 0 & \text{if } x \neq 0 \\ \text{undefined} & \text{if } x = 0 \end{cases}$
Logistic, sigmoid, or soft step		$\sigma(x) \doteq rac{1}{1+e^{-x}}$	g(x)(1-g(x))
Hyperbolic tangent (tanh)		$\tanh(x) \doteq \frac{e^x - e^{-x}}{e^x + e^{-x}}$	$1-g(x)^2$
Rectified linear unit (ReLU) ^[8]		$(x)^{+} \doteq \begin{cases} 0 & \text{if } x \leq 0 \\ x & \text{if } x > 0 \end{cases}$ = $\max(0, x) = x 1_{x > 0}$	$\begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } x > 0 \\ \text{undefined} & \text{if } x = 0 \end{cases}$
Gaussian Error Linear Unit (GELU) ^[5]	1/	$\frac{1}{2}x\left(1+\operatorname{erf}\left(\frac{x}{\sqrt{2}}\right)\right)$ $=x\Phi(x)$	$\Phi(x) + x\phi(x)$
Softplus ^[9]		$\ln(1+e^{\pi})$	$\frac{1}{1+e^{-x}}$
Exponential linear unit (ELU) ^[10]		$\begin{cases} \alpha \left(e^x - 1 \right) & \text{if } x \leq 0 \\ x & \text{if } x > 0 \end{cases}$ with parameter α	$\begin{cases} \alpha e^x & \text{if } x < 0 \\ 1 & \text{if } x > 0 \\ 1 & \text{if } x = 0 \text{ and } \alpha = 1 \end{cases}$
Scaled exponential linear unit (SELU) ^[11]		$\lambda \begin{cases} \alpha(e^{v}-1) & \text{if } x<0 \\ x & \text{if } x\geq 0 \\ & \text{with parameters } \lambda=1.0507 \text{ and } \alpha=1.67326 \end{cases}$	$\lambda \begin{cases} \alpha e^x & \text{if } x < 0 \\ 1 & \text{if } x \ge 0 \end{cases}$
Leaky rectified linear unit (Leaky ReLU) ^[12]		$\begin{cases} 0.01x & \text{if } x < 0 \\ x & \text{if } x \ge 0 \end{cases}$	$\begin{cases} 0.01 & \text{if } x < 0 \\ 1 & \text{if } x \ge 0 \\ \text{undefined} & \text{if } x = 0 \end{cases}$

NEURAL NETWORKS

Vanishing gradients

appear in backpropagation using gradientbased methods in deep networks



Maximum of gradient 0.25 With chain rule the gradient product can become very small

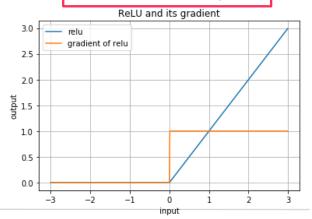
$$\frac{\partial J(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}^{(0)}} = \frac{\partial J(\boldsymbol{\theta})}{\partial \hat{\boldsymbol{y}}} \frac{\partial \hat{\boldsymbol{y}}}{\partial \boldsymbol{a}^{(1)}} \dots \frac{\partial \boldsymbol{a}^{(l)}}{\partial \boldsymbol{\theta}^{(0)}}$$

$$0.2\times0.15\times0.22\times0.09\dots$$

When the partial derivative vanishes the weights are not updated anymore

$$\vec{\theta} \coloneqq \vec{\theta} - \alpha \, \nabla J(\theta_k)$$

good for hidden layers



saturated

10.0

MLDOODLES.COM

Very narrow range, small values

1.00

0.75

-0.75

-1.00

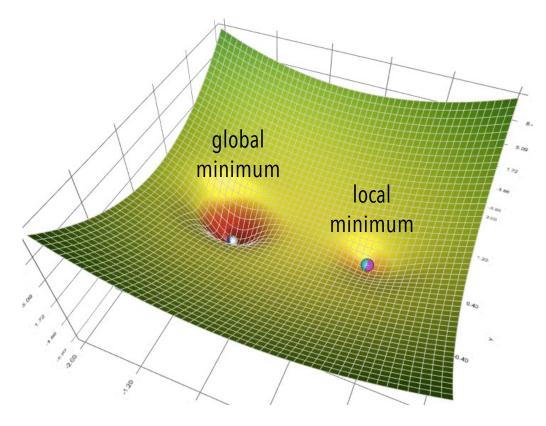
tanh

gradient of tanh

-5.0

-7.5

NOTE ON OPTIMIZERS IN NNs

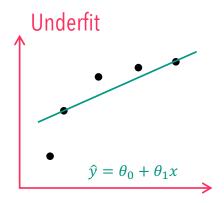


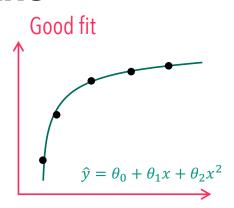
Gradient based methods (first order):

- Gradient descent
- momentum
- AdaGrad
- RMSProp
- Adam

dynamic adjustment of algorithm parameters

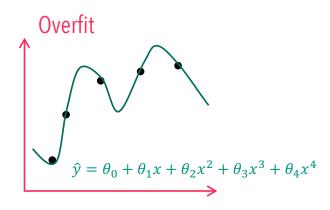
NOTE ON OVERFITTING





Improves generalization on useen data by constraining the optimization problem to discourage complex models

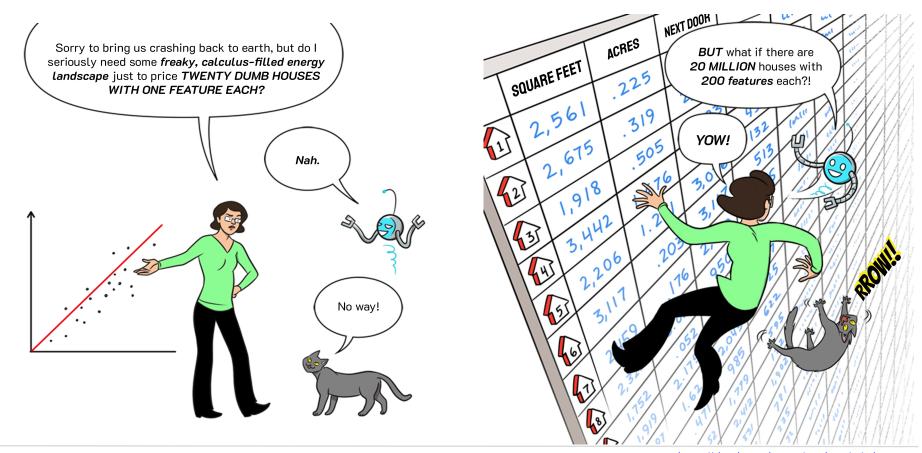
- Regularization term in loss function (penalty or shrinkage term, L1, L2)
- **Dropout**: not relying on certain nodes that only learn certain patterns (e.g., set 50% of activations to 0 during training)
- **Early stopping**: stop training before overfitting
- **Batch normalization**: normalizing each activation value using the batch (μ, σ)



Test for overfitting with independent test dataset

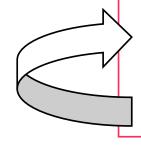
→ Difference in loss = generalization error

COMPUTATIONALLY EFFICIENT FOR BIG DATA!



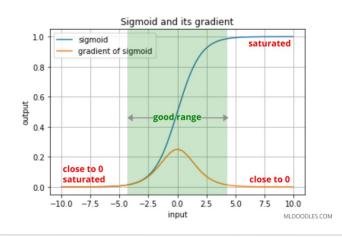
SO WHAT'S THE RECIPE?

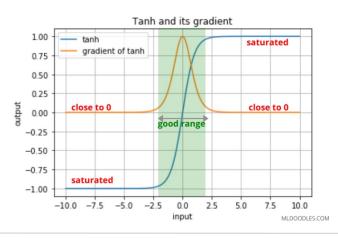
- 1. Select data features + perform data scaling
- 2. Choose network architecture
- 3. Choose <u>activation function</u> for each layer
- 4. Choose loss function & convergence criteria
- 5. Choose an optimizer & set its hyperparameters
- 6. Choose number of epochs to train
- 7. Decide on <u>regularization</u> techniques
- 8. Perform forward propagation
- 9. Compute gradients with backwards propagation
- 10. Update weights & keep track of loss



LET'S TRY IT!

- Click <u>here</u>
- Why is the example not working?
- How can you solve that?
- Try different activation functions



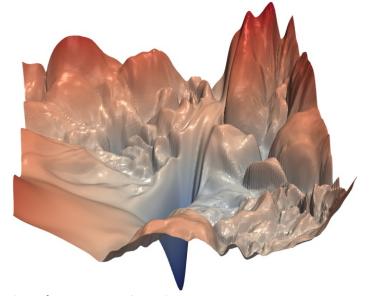


Thank you for your attention!

What questions do you have for me?

https://ml-cheatsheet.readthedocs.io/

https://buildmedia.readthedocs.org/media/pdf/ml-cheatsheet/latest/ml-cheatsheet.pdf



Let's connect! andrea.santamaria@kit.edu / @ansantam

Highly non-convex loss of ResNet-56 without skip connections [arxiv:1712.09913]

NOTE ON LOSS FUNCTION FOR CLASSIFICATION

Maximum likelihood estimation (MLE)

- $\vec{x} = \text{random sample from unknown joint probability distribution } p(\vec{y}|\vec{x}; \vec{\theta})$ ————
- $\vec{\theta}$ = parametrization of p
- Optimal $\vec{\theta}$ value can be estimated by maximizing a likelihood function:

$$\mathcal{L}(\theta) = \prod_{i=1}^{n} p\left(y_i | x_i; \theta_i\right) \rightarrow \underset{\text{observations}}{\operatorname{argmax}_{\theta}} \mathcal{L}(\theta)$$

Most NNs use the negative log-likelihood as loss function: $J(\theta) = -\ln(\mathcal{L}(\theta))$

$$J(\theta) = -\ln(\mathcal{L}(\theta))$$

cross-entropy between the training data and model distribution

probability of y given x

and θ (conditional

probability)

Thanks to machine-learning algorithms, the robot apocalypse was short-lived.