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Abstract17

Azimuthal correlations in Z+jet production at large transverse momenta are com-18

puted by matching Parton - Branching (PB) TMD parton distributions and showers with19

NLO calculations via MCatNLO. The predictions are compared with those for dijet pro-20

duction in the same kinematic range. The azimuthal correlations ∆φ between the Z bo-21

son and the leading jet are steeper compared to those in dijet production at transverse22

momenta O(100) GeV, while they become similar for very high transverse momenta23

O(1000) GeV. The different patterns of Z+jet and dijet azimuthal correlations can be used24

to search for potential factorization - breaking effects in the back-to-back region, which de-25

pend on the different color and spin structure of the final states and their interferences26

with the initial states. In order to investigate these effects experimentally, we propose to27

measure the ratio of the distributions in ∆φ for Z+jet- and multijet production at low and28

at high transverse momenta, and compare the results to predictions obtained assuming29

factorization. We examine the role of theoretical uncertainties by performing variations30

of the factorization scale, renormalization scale and matching scale. In particular, we31

present a comparative study of matching scale uncertainties in the cases of PB-TMD and32

collinear parton showers.33

1 Introduction34

The description of jet production in association with a Z boson in hadron-hadron collisions35

is an important test of predictions obtained in Quantum Chromodynamics (QCD), and pro-36

vides a relevant background to Higgs boson studies and to new physics searches. The asso-37

ciated Z boson plus jet production has been measured by CDF and D0 in proton-antiproton38

collisions at a center-of-mass energy
√
s = 1.96 TeV [1, 2]. At the LHC the ATLAS and CMS39

collaborations have published measurements in proton-proton (pp) collisions at a center-of-40

mass energy
√
s = 7 TeV [3–5], 8 TeV [6] and 13 TeV [7, 8]. Azimuthal correlations between41

Z bosons and jets have been measured at 8 TeV [6] and 13 TeV [8].42

The distribution in the azimuthal angle ∆φ between the Z boson and the jet is an espe-43

cially sensitive observable, probing several aspects of QCD physics. At leading order in the44

strong coupling αs, one has ∆φ = π. The smearing of this delta-like distribution is a mea-45

sure of higher order QCD radiation. In the region near ∆φ = π, this is primarily soft gluon46

radiation, while in the region of small ∆φ it is primarily hard QCD radiation. The large-∆φ47

region of nearly back-to-back Z boson and jet is influenced by both perturbative and non-48

perturbative QCD contributions. The relative significance of these contributions depends on49

the scale of the transverse momentum imbalance between the boson and the jet. Importantly,50

the resummation of soft multi-gluon emissions in the nearly back-to-back region probes the51

transverse momenta of the initial state partons, which can be described by transverse mo-52

mentum dependent (TMD) [9] parton distribution functions (PDFs). Theoretical predictions53

for Z boson + jet production including soft gluon resummation have recently been given in54

Refs. [10–14].55

All the experimental measurements of boson-jet azimuthal correlations that have been56

performed so far are in the kinematical range of transverse momenta of the Z boson and57
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the jets of the order pT ≈ O(100) GeV. In this kinematical range, fixed-order perturbative58

corrections beyond next-to-leading order (NLO) are sizeable, and at small ∆φ NLO calcu-59

lations are usually not sufficient for reliable predictions. For the large-∆φ region of nearly60

back-to-back Z boson and jet, the boson-jet pT imbalance scale is of order a few GeV, which61

is significantly influenced by both perturbative resummation and non-perturbative effects.62

It is worth noting that all the experimental measurements performed up to now do not cover63

the large ∆φ, nearly back-to-back region with sufficiently fine binning to investigate detailed64

features of QCD.65

With the increase in luminosity at the LHC, it becomes possible to measure Z+jet pro-66

duction in the high pT range, with pT ≈ O(1000) GeV. In this work, we observe that in this67

kinematical range the resummation of soft gluons and TMD dynamics in the nearly back-68

to-back region can be explored in a new regime, characterized by boson-jet pT imbalance69

scales on the order of a few ten GeV. The large-∆φ region, involving deviations of the order70

of the experimental angular resolution of about 1 degree from ∆φ = π, can be investigated71

by analyzing jets with measurable transverse momenta.72

Based on the above observation, in this paper we propose experimental investigations of73

back-to-back azimuthal correlations in the pT ≈ O(1000) GeV region, with a systematic scan74

of the large-∆φ regime from this high pT region down to pT ≈ O(100) GeV – a regime which75

is completely unexplored experimentally up to now. We present dedicated phenomenologi-76

cal studies of this ∆φ region as a function of pT, enabling one to explore boson-jet transverse77

momentum imbalances from a jet scale of several ten GeV down to the few GeV scale. To78

perform these studies, we use the Parton Branching (PB) approach [15,16] to TMD evolution,79

matched to NLO calculations of Z+jet production with MADGRAPH5_AMC@NLO [17].80

This approach has already been successfully applied, across a wide energy and mass range,81

to the Z boson pT spectrum at the LHC [18] and the Drell-Yan (DY) pT spectrum at lower82

fixed-target energies [19], so that the investigation of the same method in the Z+jet case is83

compelling. The ∆φ correlation in the kinematical range proposed in this paper allows one84

to study the interplay of perturbative and non-perturbative contributions to TMD dynamics85

(see e.g. [20] for the DY case) as a function of both the boson-jet pT imbalance and the evolu-86

tion scale of the TMD distribution itself, of the order of the hard scale of the process, given87

by the transverse momenta of the Z boson or the jet.88

In a previous publication [21] we have investigated the ∆φ12 correlation in high-pT dijet89

events by applying TMD PDFs and parton shower together with NLO calculations of the90

hard scattering process. In multijet events the azimuthal correlation between two jets has91

been measured at the LHC by ATLAS and CMS [22–26]. The region of ∆φ12 → π is of special92

interest, since so-called factorization - breaking [27–29] effects could become important in the93

case of colored final states. Multijet production is believed to be sensitive to such effects, as94

well as vector boson + jet production [30]. In order to investigate factorization - breaking ef-95

fects, we propose to compare the theoretical description of the azimuthal correlation ∆φ12 in96

multijet production with the one in Z+jet production. A thorough investigation of azimuthal97

correlations in the back-to-back region in Z+jet events has been also performed in Ref. [10],98

addressing the issue of factorization - breaking.99
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In this report we compare in detail high-pT dijet and Z+jet production by applying the100

PB TMD method [15, 16] at NLO. In Ref. [21] these PB TMD PDFs were applied to multijet101

production at large transverse momenta. We apply the same method to the calculation of102

Z+jet production. We propose to use the same kinematic region for the high-pT dijet and103

Z+jet production to allow a direct comparison of the measurements. At large enough pT the104

mass of the Z-boson becomes negligible, and the different color and spin structure of the final105

states might allow to observe factorization - breaking effects by comparing the measurements106

to calculations assuming that factorization holds.107

In the following, we start by describing the basic elements of the PB TMD method and the108

Z+jet calculation in Sec. 2. In Sec. 3 we present results for the Z+jet azimuthal correlations109

and compare them with the multijet case. We summarize in Sec. 4. In an appendix we discuss110

technical details on the use of MCatNLO+CASCADE3.111

2 Basic elements of the calculation112

In this section we first recall the salient features of the PB TMD approach, summarizing113

the main concepts of the approach and its applications; then we describe the calculation114

of Z+jet production by the PB TMD method matched with NLO matrix elements in MAD-115

GRAPH5_AMC@NLO.116

2.1 PB TMD method117

The PB approach [16] provides a formulation for the evolution of TMD parton distributions118

in terms of perturbatively calculable Sudakov form factors and real-emission splitting ker-119

nels, with angular ordering phase space constraints and with non-perturbative distributions120

at the initial scale of the evolution to be determined from fits to experiment. This formulation121

uses a soft-gluon resolution scale zM [15] to separate resolvable and non-resolvable branch-122

ings. An important feature of the PB TMD evolution equation [16] concerns its collinear123

limits: upon integration over all transverse momenta, the PB TMD evolution equation re-124

turns the DGLAP [31–34] equation for resolution scale zM → 1, while it coincides with125

the CMW [35, 36] coherent branching equation for angular-ordered zM [37]. The PB TMD126

method is based on the “unitarity” picture [38] of parton evolution usually employed in127

parton showering Monte Carlo (MC) algorithms [39, 40]. The PB evolution equation for the128

TMD distributions is matched by a corresponding TMD parton shower for the spacelike par-129

ton cascade, generated by “backward evolution” [41]. A significant difference with respect to130

ordinary parton showers is that in the PB TMD method TMD distributions are defined and131

determined from fits to experimental data, which places constraints on fixed-scale inputs132

to evolution, while in ordinary parton showers instead nonperturbative physics parameters133

and showering parameters are tuned. No MC tuning is performed in the PB TMD case.134

The NLO PB collinear and TMD parton distributions were obtained in Ref. [42] from QCD135

fits to precision DIS data from HERA [43] using the xFitter analysis framework [44, 45]. Two136
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different sets, PB-NLO-2018-Set 1 and PB-NLO-2018-Set 2, were obtained, with PB-NLO-137

2018-Set 1 corresponding at collinear level to HERAPDF 2.0 NLO [43]. In PB-NLO-2018-Set 2138

the transverse momentum (instead of the evolution scale in Set 1) is used as the scale in the139

running couplingαs which corresponds to the angular ordering of soft gluon emissions in the140

initial-state parton evolution [36,37,46,47]. It has been shown in [18,19] that Set 2 provides a141

better description of experimental measurements for the Z - boson spectrum at small low-pT.142

Also, it has been shown in [21] that the transverse momentum scale in the running coupling143

αs is important for a good description of data on di-jet angular correlations. In this paper we144

will concentrate on Set 2 only.145

In Fig. 1 we show the TMD PDF distributions for up quarks and gluons at x = 0.01146

and µ = 100 and 1000 GeV for PB-NLO-2018-Set 2. The transverse momentum distribution147

of gluons is broader than that of quarks, due to gluon self-coupling and the different color148

factors. In Fig. 1 also the uncertainties of the distributions, as obtained from the fit [42], are149

shown. The differences in the transverse momentum spectra of quarks and gluons will show150

up in differences in azimuthal correlation distributions.
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Figure 1: TMD parton density distributions for up quarks and gluons of PB-NLO-2018-Set 2 as a
function of kT at µ = 100 and 1000 GeV and x = 0.01. In the lower panels show the full uncertainty
of the TMD PDFs, as obtained from the fits [42].

151

The PB TMD evolution equation resums Sudakov logarithms. Current calculations in the152

PB TMD approach are performed with leading-logarithm (LL) and next-to-leading-logarithm153

(NLL) accuracy. The accuracy can be systematically improved, and the extension to next-to-154

next-to-leading logarithmic (NNLL) accuracy is being studied. In this respect, the approach155

can be compared [48] with analytic resummation methods [49, 50]. The extraction of TMD156

distributions from the PB TMD fits described above could be compared with extractions,157
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such as [51, 52], based on [49, 50]. The TMDlib tool [53, 54] is designed as an aid for such158

studies. On the other hand, while analytic resummation approaches apply to the inclusive159

transverse momentum spectrum, the PB TMD approach works at exclusive level and can be160

applied to make predictions not only for the inclusive spectrum but also for the structure of161

the final states.162

A framework to compute theoretical predictions combining the PB TMD resummation163

with fixed-order NLO matrix elements in MADGRAPH5_AMC@NLO has been developed164

in [18,19]. The predictions [18] have been successfully compared with LHC measurements of165

Z boson pT and φ∗ distributions [55–57]. Predictions by this method have also been success-166

ful in describing [19] DY pT spectra at lower masses and energies [58–61]. The significance167

of this result is enhanced by the recent observation [62] that fixed-order NNLO corrections168

are not extremely large in the kinematic region of the data. This framework has also been169

applied to di-jet production [21], and predictions for di-jet correlations have been found in170

good agreement with LHC measurements [25,26]. We will employ this framework for Z+jet171

production in the next subsection.172

As a method which is applicable at the level of exclusive final states, the PB TMD ap-173

proach can be used in the context of multi-jet merging algorithms. A TMD multi-jet merging174

method has been developed in [63]. Its application to Z boson + multi-jets production [63,64]175

illustrates that transverse momentum recoils in the initial-state showers [65–67] influence sig-176

nificantly the theoretical systematics associated with the merging parameters. In the present177

paper, we will concentrate on the Z+jet back-to-back region, rather than the multi-jet pro-178

duction region, and we will therefore not use the TMD merging procedure.179

Recently, the PB TMD evolution equation has been generalized to include TMD split-180

ting functions [68, 69], defined through high-energy factorization [70]. This generalization is181

important particularly for processes sensitive to TMD distributions at small values of longi-182

tudinal momentum fractions x. In this paper we consider processes at mid to large x and we183

do not consider it in the following.184

2.2 Calculation of Z+jet distributions185

The process Z+jet at NLO is calculated with MADGRAPH5_AMC@NLO using the collinear186

PB-NLO-2018-Set 2, as obtained in Ref. [42] applying αs(MZ) = 0.118. The matching of NLO187

matrix elements with PB TMD parton distributions is described in Refs. [18,19,41]. The exten-188

sion to multijet production is illustrated in Ref. [21]. Predictions are obtained by processing189

the MADGRAPH5_AMC@NLO event files in LHE format [71] through CASCADE3 [41] for190

an inclusion of TMD effects in the initial state and for simulation of the corresponding parton191

shower (labeled MCatNLO+CAS3 in the following).192

Fixed order NLO Z+jet production is calculated with MADGRAPH5_AMC@NLO in193

a procedure similar to the one applied for dijet production described in [21] (labeled194

MCatNLO(fNLO)). For the MCatNLO mode, the HERWIG6 [72, 73] subtraction terms are195

calculated, as they are best suited for the use with PB - parton densities, because both ap-196

ply the same angular ordering condition. The use HERWIG6 subtraction terms together with197

5



CASCADE3 is justified in appendix Section 5 for final state parton shower as well as initial198

and final state showers by a comparison of the predictions obtained with CASCADE3 and199

with HERWIG6. The matching scale µm = SCALUP limits the contribution from PB-TMDs200

and TMD showers.201

In the calculations, the factorization and renormalization scales are set to µ = 1
2

∑
i pT,i,202

where the index i runs over all particles in the matrix element final state. This scale is also203

used in the PB-TMD parton distribution A(x, kT, µ). The scale uncertainties of the predic-204

tions are obtained from variations of the scales around the central value in the 7-point scheme205

avoiding extreme cases of variation.206
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Figure 2: Transverse momentum spectrum of the Z+jet-system pT,Zj (left) and ∆φZj distribution
(right). The predictions are shown for fixed NLO (MCatNLO(fNLO), the (unphysical) distribution at
LHE-level and after inclusion of PB-TMDs (MCatNLO+CAS3).

In Fig. 2 we show the distributions of the transverse momentum of the Z+jet system,207

pT,Zj , and the azimuthal correlation in the Z+jet system, ∆φZj, for a fixed NLO calcula-208

tion, for the full simulation including PB-TMD PDFs and parton showers as well as for the209

MCatNLO calculation at the level where subtraction terms are included without addition210

from parton shower (LHE-level). We require a transverse momentum pT > 200 GeV for the211

Z boson and define jets with the anti-kT jet-algorithm [74], as implemented in the FASTJET212

package [75], with a distance parameter of R=0.4. The effect of including PB-TMD PDFs213

and parton showers can be clearly seen from the difference to the fixed NLO and LHE-level214

calculations.215

In the low pT,Zj region one can clearly see the expected steeply rising behavior of the216

fixed NLO prediction. In the ∆φZj distribution one can observe the limited region for fixed217

NLO at ∆φZj < 2/3π, since at most two jets in addition to the Z boson appear in the calcula-218

tion. At large ∆φZj, the fixed NLO prediction rises faster than the full calculation including219

resummation via PB-TMDs and parton showers. In the following we concentrate on the large220

∆φZj region.221
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3 Back-to-back azimuthal correlations in Z+jet and multijet pro-222

duction223

We now present predictions, obtained in the framework described above, for Z+jet and mul-224

tijet production.* The selection of events follows the one of azimuthal correlations ∆φ12 in225

the back-to-back region (∆φ12 → π) in multijet production at
√
s = 13 TeV as obtained by226

CMS [26]: jets are reconstructed with the anti-kT algorithm [74] with a distance parameter227

of 0.4 in the rapidity range of |y| < 2.4. We require either two jets with pleading
T > 200 GeV or228

a Z boson and a jet as leading or subleading objects with a transverse momentum p
leading
T >229

200 GeV.230

We consider distributions of the azimuthal correlation between the Z boson and the lead-231

ing jet, ∆φZj, for pleading
T > 200 GeV as well as for the very high pT region of pleading

T > 1000232

GeV.233

The calculations are performed with MCatNLO+CAS3 using PB-NLO-2018-Set 2 as the234

collinear and TMD parton densities with running coupling satisfying αs(mZ) = 0.118 and235

PB-TMD parton shower.236
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Figure 3: Predictions of the azimuthal correlation ∆φZj(∆φ12) for Z+jet and multijet processes in
the back-to-back region for pleading

T > 200 GeV (left) and p
leading
T > 1000 GeV (right) obtained from

MCatNLO+CAS3. Shown are the uncertainties obtained from scale variation (as described in the
text). The measurements of dijet correlations as obtained by CMS [26] are shown as data points, for
comparison.

In Fig. 3, the prediction for the azimuthal correlations ∆φZj for Z+jet production in the237

back-to-back region is shown.† We also show, for comparison, the prediction of azimuthal238

correlations ∆φ12 for multijet production in the same kinematic region, compared to the239

measurement of dijet production obtained by CMS [26]. We observe that the distribution240

*A framework based on CCFM evolution [76] was described in [77, 78] for multi-jet and vector boson + jet
correlations.

†Predictions for the region of small ∆φ require including the contribution of higher parton multiplicities,
e.g. via multi-jet merging [63].
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of azimuthal angle ∆φZj in Z+jet-production for pleading
T > 200 GeV is more strongly corre-241

lated towards π than the distribution of angle ∆φ12 in multijet production. This difference is242

reduced for pleading
T > 1000 GeV.243

Differences in ∆φ between Z+jet and multijet production can result from the different244

flavor composition of the initial state and therefore different initial state transverse momenta245

and initial state parton shower, as well as from differences in final state showering since246

both processes have a different number of colored final state partons. Effects coming from247

factorization - breaking, interference between initial and final state partons, will depend on248

the final state structure and the number of colored final state partons.249

We first investigate the role of initial state radiation and the dependence on the trans-250

verse momentum distributions coming from the TMD PDFs, which gives a large contribu-251

tion to the decorrelation in ∆φ. The kT-distribution obtained from a gluon TMD PDF is252

different from the one of a quark TMD PDF as shown in Fig. 1 for x = 0.01 and scales of253

µ = 200(1000) GeV. In Fig. 4 we show the probability of gg, qg and qq initial states (q stands254

for quark and antiquark) as a function of pleading
T for Z+jet and multijet production obtained255

with MCatNLO+CAS3. At high p
leading
T > 1000 GeV the qq channel becomes important for256

both Z+jet and multijet final states, while at lower pleading
T > 200 GeV the gg channel is domi-257

nant in multijet production, leading to larger decorrelation effects, since gluons radiate more258

compared to quarks.
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Figure 4: The probability of gg, qg and qq initial states in Z+jet and multijet production (q stands for
quark and antiquark) as a function of pleading

T . The predictions are calculated with MCatNLO+CAS3.

259

The role of final state radiation in the correlation in ∆φ12 distributions is more difficult260

to estimate, since the subtraction terms for the NLO matrix element calculation also depend261

on the structure of the final state parton shower. In order to estimate the effect of final state262

shower we compare a calculation of the azimuthal correlations in the back-to-back region263

obtained with MCatNLO+CAS3 with the one obtained with MCatNLO+PYTHIA8 (Fig. 5).264

For the calculation MCatNLO+PYTHIA8 we apply the PYTHIA8 subtraction terms in the265

MADGRAPH5_AMC@NLO calculation, use the NNPDF3.0 [79] parton density and tune266

CUETP8M1 [80].267

As shown in Fig. 5, the distributions are different because of the different parton shower268

in CASCADE3 and PYTHIA8, but the ratio of the distributions for Z+jet and multijet produc-269
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Figure 5: Predictions for the azimuthal correlation ∆φZj(∆φ12) in the back-to-back region for Z+jet
and multijet production obtained with MCatNLO+CAS3 (left column) and MCatNLO+PYTHIA8
(right column). Shown are different regions in pleading

T > 200 GeV (upper row) and pleading
T > 1000 GeV

(lower row). The bands show the uncertainties obtained from scale variation (as described in the
text).

tion are similar: Z+jet-production gives a steeper (more strongly correlated) distribution at270

low p
leading
T , while at high p

leading
T the distributions become similar in shape. We conclude,271

that the main effect of the ∆φ decorrelation comes from initial state radiation, and the shape272

of the ∆φ decorrelation in the back-to-back region becomes similar between Z+jet and dijet273

processes at high pleading
T where similar initial partonic states are important.274

The matching scale µm limits the hardness of parton-shower emissions, and is thus typi-275

cally a non-negligible source of variation in matched calculations (see e.g. [81] for a detailed276
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discussion). It is thus interesting to assess the robustness of the previous findings under277

variations of the matching scale. Assessing matching scale variations in both an angular-278

ordered shower – such as CASCADE3 – and a transverse-momentum-ordered shower –279

such as PYTHIA8 – additionally tests the interpretation of the matching scale. In transverse-280

momentum ordered showers, the matching scale sets the maximal transverse momentum of281

the first shower branchings, while branchings beyond the first emission are not explicitly af-282

fected by the matching scale. In an angular-ordered shower, however, the matching scale is283

applied as "veto scale" to avoid larger transverse momenta for any branching, i.e. the match-284

ing scale directly affects all branchings. The result of changing the matching scale to half or285

twice the central value is shown in Fig. 6. As expected, the value of the matching scale has286

an impact on the prediction (∼ 5%). This is particularly apparent when µm is used to set287

the maximal transverse momentum of the first emission in PYTHIA8. Overall, we find that288

interpreting the matching scale as veto scale in CASCADE3 leads to apparently more robust289

predictions. Interestingly, the matching scale uncertainty becomes smaller for higher-pleading
T290

jet configurations in CASCADE3. The size of the matching scale variation is comparable to291

scale variations, and should thus be carefully studied when designing uncertainty estimates.292

In dijet production the measurements are rather well described with predictions obtained293

with MCatNLO+CAS3, as shown in Fig. 3 and discussed in detail in Ref. [21]. Only in the294

very high p
leading
T region, a deviation from the measurement is observed, which could be295

perhaps interpreted as coming from a violation of factorization. It is therefore very important296

to measure ∆φ distributions in other processes, where factorization is expected to hold.297

In order to experimentally probe effects which could originate from factorization - break-298

ing in the back-to-back region we propose to measure the ratio of distributions in ∆φZj for299

Z+jet and ∆φ12 for multijet production at low and very high pleading
T , and compare the mea-300

surement with predictions assuming that factorization holds. The number of colored partons301

involved in Z+jet and multijet events is different, and deviations from factorization will de-302

pend on the structure of the colored initial and final state. In order to minimize the effect of303

different initial state configurations, a measurement at high pleading
T , could hint more clearly304

possible factorization - breaking effects.305

In Ref. [10] a detailed study on Z+jet azimuthal correlations is reported, applying TMD-306

factorization and the "winner-takes-all" jet recombination scheme, with the aim to reduce307

potential factorization breaking contributions. We have checked, that our main results re-308

main unchanged when the "winner-takes-all" jet recombination scheme is applied, only in309

the last bin of the ∆φZj distributions the cross section is reduced.310

4 Summary and conclusions311

We have investigated azimuthal correlations in Z+jet production and compared predictions312

with those for multijet production in the same kinematic range. The predictions are based on313

PB-TMD distributions with NLO calculations via MCatNLO supplemented by PB-TMD par-314

ton showers via CASCADE3. The azimuthal correlations ∆φZj, obtained in Z+jet production315
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Figure 6: The dependence on the variation of the matching scale µm in predictions for the az-
imuthal correlation ∆φZj(∆φ12) in the back-to-back region. Shown are predictions obtained with
MCatNLO+CAS3 (left column) and MCatNLO+PYTHIA8 (right column) for pleading

T > 200 GeV (upper
row) and p

leading
T > 1000 GeV (lower row). The predictions with different matching scales µm varied

by a factor of two up and down are shown.

are steeper compared to those in multijet production (∆φ12) at transverse momenta O(100)316

GeV, while they become similar for very high transverse momenta, O(1000) GeV, which is a317

result of similar initial parton configuration of both processes.318

In Z+jet production the color and spin structure of the partonic final state is different319

compared to the one in multijet production, and differences in the azimuthal correlation320

patterns can be used to search for potential factorization - breaking effects, involving initial321

and final state interferences. In order to experimentally investigate those effects, we propose322
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to measure the ratio of the distributions in ∆φZj for Z+jet- and ∆φ12 for multijet production323

at low and at very high p
leading
T , and compare the measurements to predictions obtained324

assuming that factorization holds.325

We have studied the matching scale dependence in the PB-TMD predictions and com-326

pared it with the case of NLO-matched calculations based on the PYTHIA8 collinear shower.327

We find that variations of the matching scale lead to more stable predictions in the PB-TMD328

case, with the relative reduction of the matching scale theoretical uncertainty becoming more329

pronounced for increasing pleading
T transverse momenta.330
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5 Appendix: Comparison of CASCADE3 and HERWIG6334

The calculations presented here apply the MCatNLOmethod using HERWIG6 (H6) subtrac-335

tion terms, as implemented in MADGRAPH5_AMC@NLO. The NLO accuracy of the calcula-336

tions is preserved by construction, since the use of PB-TMD distributions and TMD shower,337

as ordinary parton showers, does not change the inclusive cross section.338

Since HERWIG6 (H6) subtraction terms are used in the MCatNLO+CAS3 calculations,339

we investigate here in detail the contribution of the parton shower used in CASCADE3. We340

compare predictions obtained with MCatNLO+CAS3 with the corresponding ones obtained341

with MCatNLO+H6, using the same LHE files used for the predictions in this paper. We342

study the jet distributions obtained with the anti-kT algorithm with distance parameter 0.4343

in Z+jet events with pT > 30 GeVand |η| < 5. We compare distributions of the first and344

second jet in Z+jet events: the first (highest pT) jet is part of the lowest order process, while345

the second (highest pT) jet is the real correction and therefore subject to subtraction terms346

(keeping in mind that the highest pT jet in an NLO calculation can also come from the real347

correction).348

In H6 the allowed region of z for a branching q → qg in the shower is Qq/Q < z <349

1−Qg/Q (e.g. A.2.2 in Ref. [82]), with Qq = mq + VQCUT and Qg = mg + VGCUT, and mq,mg350

being the quark and gluon effective masses, and VQCUT,VGCUT the minimum virtuality pa-351

rameters.352

First we investigate final state parton showers. In CASCADE3, the PYTHIA6 final state353

shower is used (since the PB - method has not yet been applied for final state radiation), with354

the angular ordering veto condition. Since final state radiation is independent of parton355

densities, a direct comparison of MCatNLO+CAS3 and MCatNLO+H6, using the same LHE356

files, while only simulating final state radiation, is possible. In Fig. 7 we show a comparison357

of predictions for the transverse momentum of the first two highest pT jets in Z+jet events358

(using identical LHE files).359

The uncertainty coming from different parameter settings in the H6 final state parton360

shower is estimated by changing the light quark masses from the default to 0.32 GeV(Rmas =361

0.32, labelled asml) and VQCUT,VGCUT from the default to 0.1(1.5), labelled as V cl(V ch),362

respectively (the lowest values chosen are those for which H6 is still working).363

In Fig. 8 comparison is shown for the pseudorapidity η of the first two highest pT jets.364

Within the variation of the parameters, the prediction of MCatNLO+CAS3 agrees with the365

one of MCatNLO+H6, justifying the application of the PYTHIA6 final state parton shower366

algorithm.367

Next we investigate the contribution of PB - TMD PDFs and the PB - TMD parton shower368

in the initial state and compare the predictions with the ones from H6. Since in H6 the initial369

state parton shower cannot be applied alone, but only in combination with the final state370

shower, we perform a similar calculation also with CASCADE3. In Fig. 9 we show a com-371

parison of MCatNLO+CAS3 and MCatNLO+H6 predictions (including the same parameter372

variations for H6 as for the final state shower) for the transverse momentum of the first two373

highest pT jets. In Fig. 10 the corresponding comparison is shown for the pseudorapidity dis-374
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Figure 7: Comparison of predictions obtained with MCatNLO+CAS3 and MCatNLO+H6 for Z+jet
obtained with MCatNLO. Shown are predictions using only final state parton shower. The band of
MCatNLO+CAS3 shows the uncertainties obtained from scale variation (as described in the text).
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Figure 8: Comparison of predictions obtained with MCatNLO+CAS3 and MCatNLO+H6 for Z+jet
obtained with MCatNLO. Shown are predictions using only final state parton shower. The band of
MCatNLO+CAS3 show the uncertainties obtained from scale variation (as described in the text).

tributions. The transverse momentum distributions agree well within the uncertainties com-375

ing from parameter variations, while for the η-distributions some differences in the very for-376

ward/backward regions are seen. However, one can see, that a variation of VQCUT,VGCUT377

has an significant effect especially in the forward/backward region. Since these parameters378
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are very different from the ones used in PB TMD PDFs and the PB - TMD shower, we con-379

clude that the use of H6 subtraction terms in MCatNLO is consistent with the use of PB -380

TMD PDFs, PB - TMD initial state parton shower, as applied in MCatNLO+CAS3.
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Figure 9: Comparison of predictions obtained with MCatNLO+CAS3 and MCatNLO+H6 for Z+jet
obtained with MCatNLO. Shown are predictions using initial and final state parton shower. The band
of MCatNLO+CAS3 show the uncertainties obtained from scale variation (as described in the text).
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Figure 10: Comparison of predictions obtained with MCatNLO+CAS3 and MCatNLO+H6 for Z+jet
obtained with MCatNLO. Shown are predictions using initial and final state parton shower. The band
of MCatNLO+CAS3 show the uncertainties obtained from scale variation (as described in the text).
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