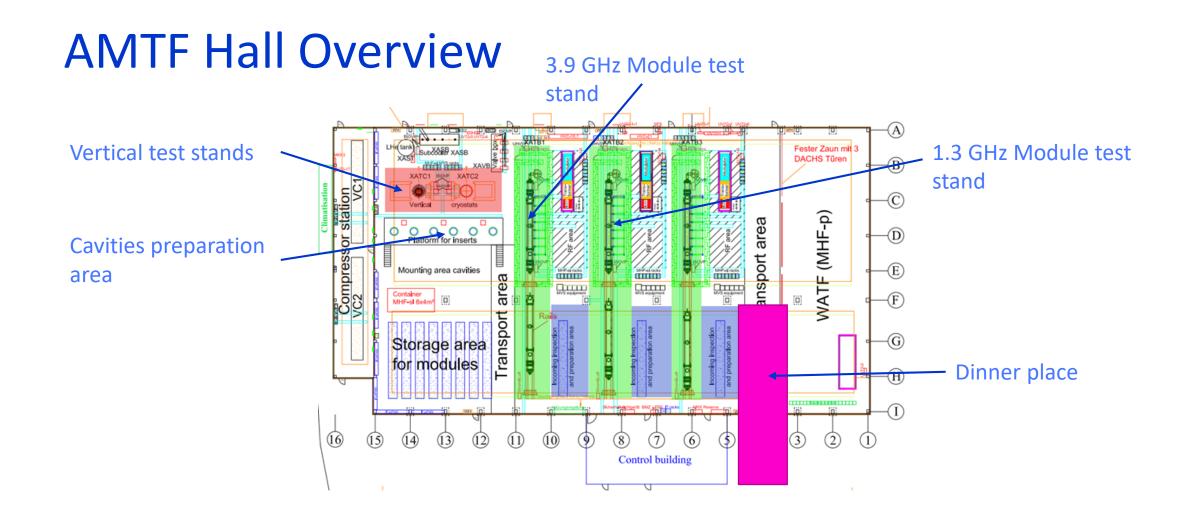


This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.

Vertical cavity testing at DESY

AMICI ETIAM Workshop on Vertical SRF Cavity testing 14-15.09.2022 DESY Hamburg

Mateusz Wiencek (DESY MSL)



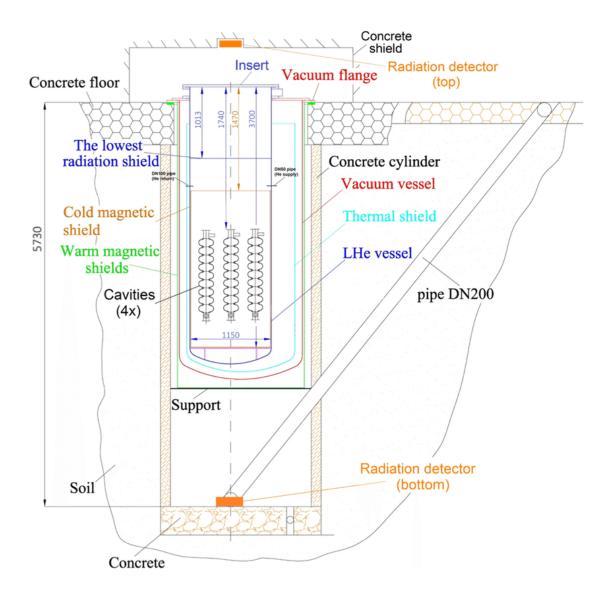
Outline

- AMTF Hall overview
- Cavities preparation area overview
- Test stands overview
- VT procedure
- Current projects
- Future plans and possibilities
- Cavities testing in serial mode
- Summary

Cavities preparation area overview


• 6 inserts

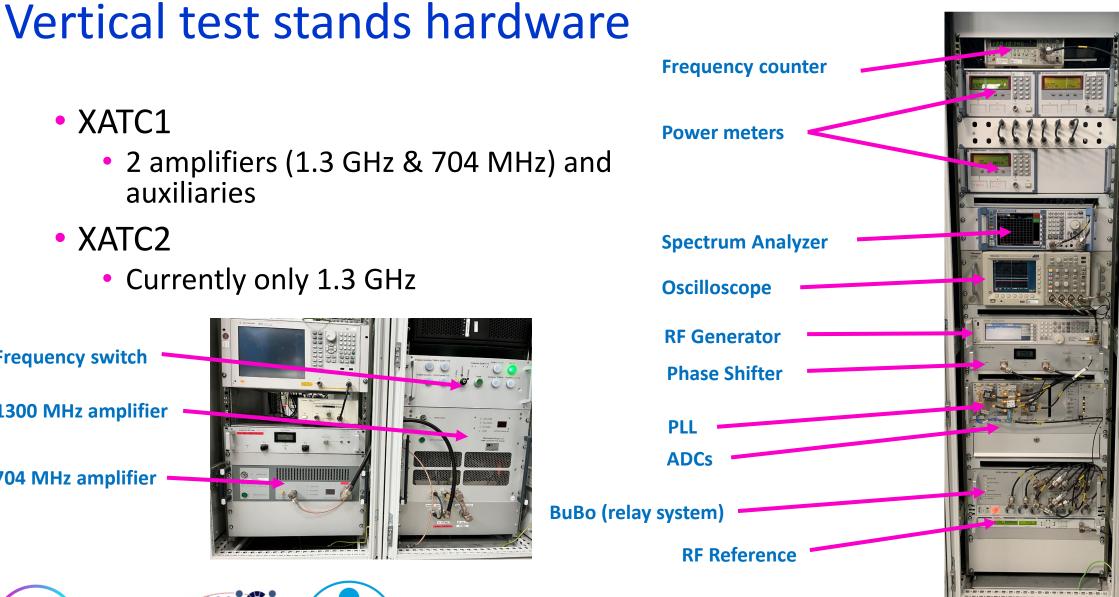
- 1 x Up to 4 x 1.3GHz 9-cells cavities
- 1 x Up to 3 x 1.3GHz and 1 x QPR housing
- 2 x Up to 2 x 704MHz 6 cells cavities
- 2 x R & D 1.3GHz with additional instrumentation



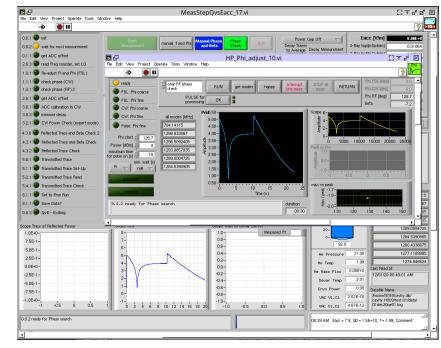
AMICI ETIAM Workshop on Vertical SRF Cavity Testing DESY 14 - 15.09.2022

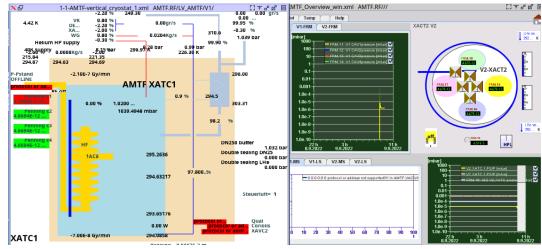
Vertical cryostats

ΖX


Frequency counter • XATC1 **Power meters** • 2 amplifiers (1.3 GHz & 704 MHz) and auxiliaries

- XATC2
 - Currently only 1.3 GHz




AMICI ETIAM Workshop on Vertical SRF Cavity Testing DESY 14 - 15.09.2022

Vertical test stands software

- Most signals available in DOOCS and EPICS
- Measurements performed with semi – automatic Labview software
- Some additional scripts and software for VNA

DESY Test stand XATC1 summary

XATC1						
No	Property name	Value	Unit	Comment		
1	LHe volume	2000	L			
2	Operating temperature	4.2 - 1.4	К			
3	Diameter / size	1.150	m			
4	Number of inserts	6		For 2 cryostats		
5	RF Frequency	1300, 704	MHz			
6	Maximum Incident power	200	W			
7	Additional instrumentation	Second Sound, Additional T- sensors, Magnetometers		R&D inserts		
8	Typical testing rate (VTs / year)	127 (2021)		For 2 cryostats		
9	Possibility to test naked cavities	YES	YES / NO			
10	Infrastructure for small intervention	YES	YES / NO			

DESY Test stand XATC2 summary

XATC2						
No	Property name	Value	Unit	Comment		
1	LHe volume	2000	L			
2	Operating temperature	4.2 - 1.4	К			
3	Diameter / size	1.150	m			
4	Number of inserts	6		For 2 cryostats		
5	RF Frequency	1300	MHz			
6	Maximum Incident power	200	W			
7	Additional instrumentation	Second Sound, Additional T- sensors, Magnetometers		R&D inserts		
8	Typical testing rate (VTs / year)	127 (2021)		For 2 cryostats		
9	Possibility to test naked cavities	YES	YES / NO			
10	Infrastructure for small intervention	YES	YES / NO			

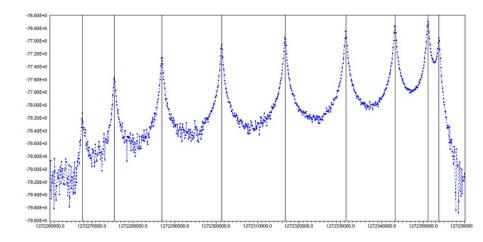
VT procedure

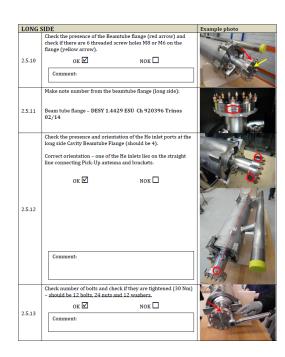
- Whole procedure usually takes around 2 weeks
- Cryogenic operations and 2K measurements around 3 5 working days
- Requires good cooperation within several experts from different fields
 - Vacuum
 - Mechanics
 - Cryogenics
 - RF

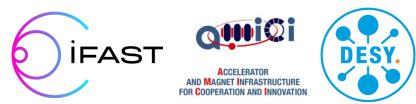
VT procedure – Incoming inspection

Vacuum incomina

Mounting



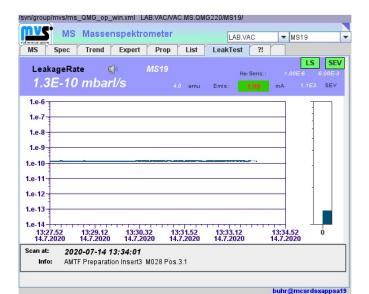

With or without waiting at 100K

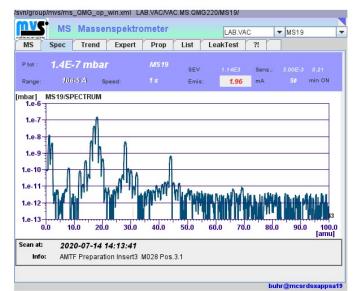


- RF Incoming
 - FM Spectra
 - Antennas shortcuts check
- Mechanical incoming
 - Shock loggers disassembly
 - Torques on screws
 - Positions of auxiliaries
 - AV closed properly?
 - etc...

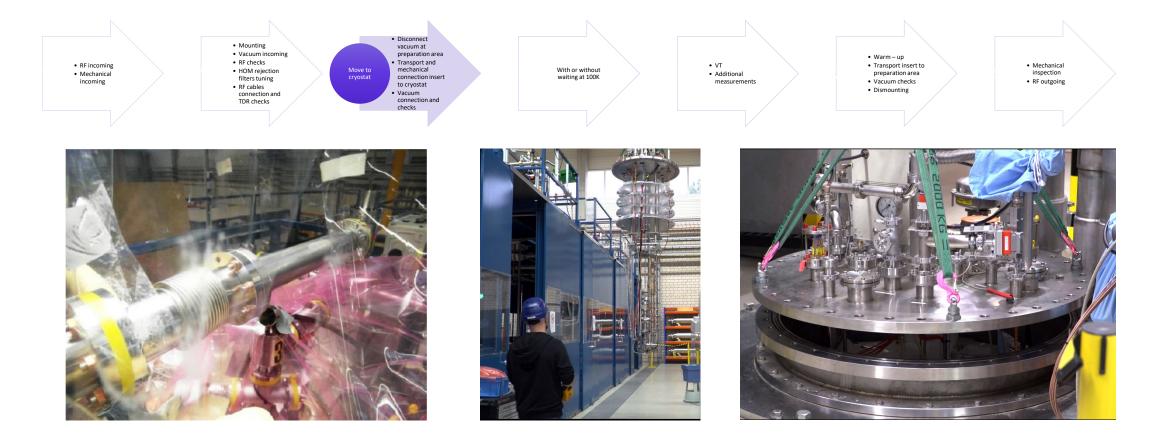
AMICI ETIAM Workshop on Vertical SRF Cavity Testing DESY 14 – 15.09.2022

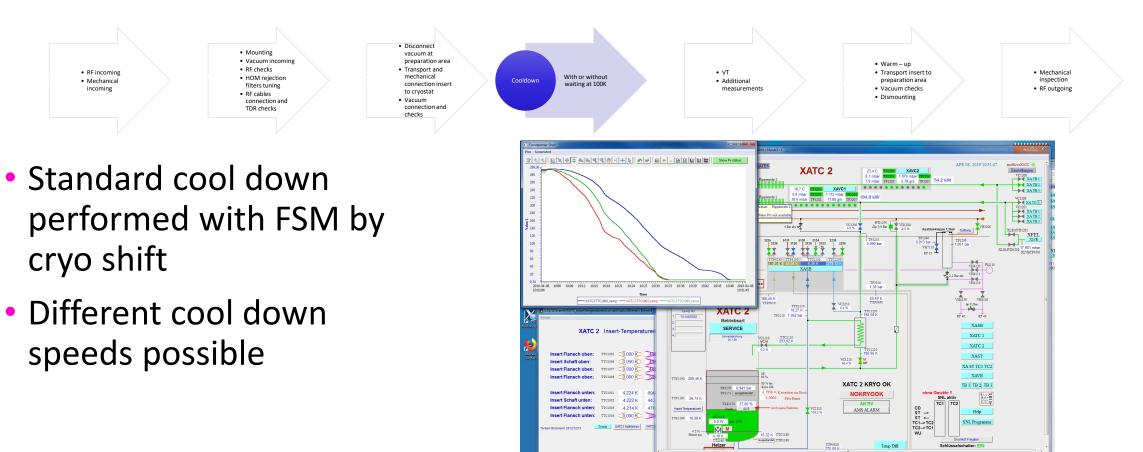
VT procedure – insert assembly and checks





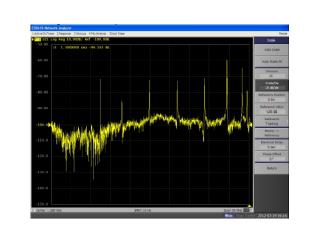
Warm – up
Transport insert to preparation area
Vacuum checks
Dismounting

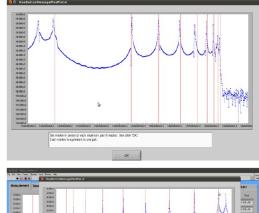

Mechanical inspectionRF outgoing

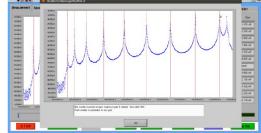

AMICI ETIAM Workshop on Vertical SRF Cavity Testing DESY 14 – 15.09.2022

VT procedure – move insert to cryostat

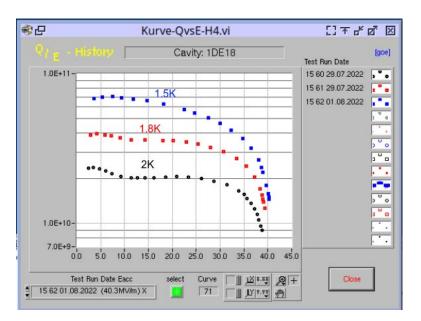
VT procedure - cool down




DE 🔺 🏲 🖶 👀


VT procedure - measurements at 2K – FM Spectra, HOM Spectra

- Fundamental mode spectra
- HOM Spectra



VT procedure - measurements below Tc - QvsE

- QvsE
 - 2K \rightarrow Cavity performance
 - 1.8K → Second sound
 - 1.5K \rightarrow Obtain R_{BCS} at 2K

VT procedure - measurements below Tc - QvsT

1.0E+1

1.0E+10-

1.0E+9-

· • • •

Tmax= 3.61 K

Tmin= 1.38 K

TM010

1.5

Q/T # 1 / 1 Curve

2.0

Qo(Tmax)= 1.42E+9

Qo(Tmin)= 9.61E+10

pi mode

II 1 1. YY 🖑

Q(T) down to 1.38K

Kurve-OvsT7.vi

Cavity: 1DE3 Test: 21 Datum: 28.10.2021

25

[] 不 분 정 🗵 🔫 문

[goe]

4.0

*** ** *

35

=

fo(Tmax)= 1297.51 MHz

fo(Tmin)= 1297.60 MHz

Cursor 0

1.0E-8

1.0E-7

1.0E-8

1.0E-9-1 2.5

∧/kB = ₫Г

A= 7.43E-23

Rres = 2.60E-9

3.0 3.5 4.0 4.5 5.0 5.5 6.0

-18.21 K

Kurve-QvsT5_RES.vi

Cavity: 1DE3 Test: 21 Datum: 28.10.2021

AUTOMATIC FIT

A*f 2 (___)

Geometrie constant = 271.50 Ohm Independend from the number of cells

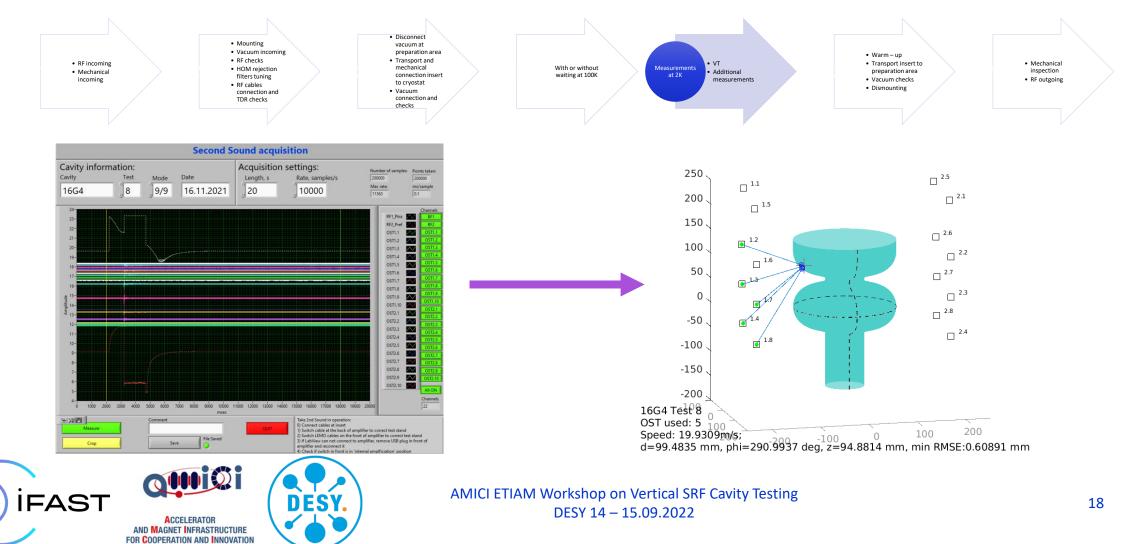
*e k_B*T + Bres

• QvsT

- Obtain R_{res}
- Eacc between 3 and 5 MV/m
- 3.5 K → 1.4 K
- Movable antenna

AMICI ETIAM Workshop on Vertical SRF Cavity Testing DESY 14 – 15.09.2022 CT F Z X

6.5 7.0

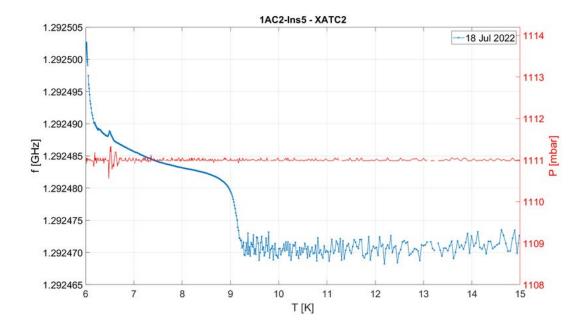

, ° • ° •

Fit:

1 1×1×1×1×1 1 +

1 1 1. 1 1 m

VT procedure - measurements below Tc – Second Sound



VT procedure - measurements around Tc - FvsT

• FvsT

- Constant pressure inside cryostat
- Frequency change around T_c

AMICI ETIAM Workshop on Vertical SRF Cavity Testing DESY 14 – 15.09.2022

VT procedure – after cold test

- Shielding opening, radiation measurement
- Warm up to room temperature
- Vacuum disconnection at cryostat
- Transport of the insert to preparation area
- Vacuum connection, LC & RGA after cold test
- Vacuum disconnection
- Cavity dismounting

VT procedure – outgoing inspection

 Disconnect vacuum at preparation area Transport and mechanical connection insert to cryostat
 Vacuum connection and checks

With or without waiting at 100K VT
Additional measurements

 Warm – up
 Transport insert to preparation area
 Vacuum checks
 Dismounting

- Mechanical outgoing
 - Torques on screws
 - Positions of auxiliaries
 - AV closed properly?
 - Shock loggers assembly
 - etc...
- Additional procedures (if requested)
- RF Outgoing
 - FM Spectra
 - Antennas shortcuts checks

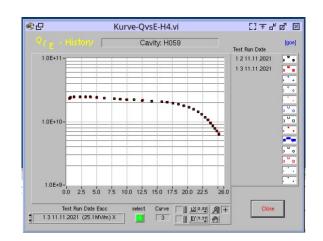
Current R&D projects

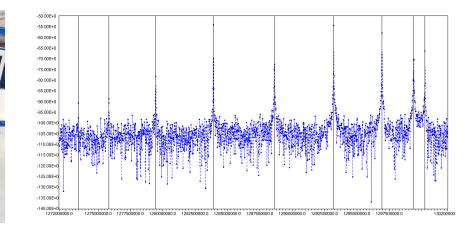
Single cells R&D

- Mid-T backing
- Low-T backing

SRF GUNs

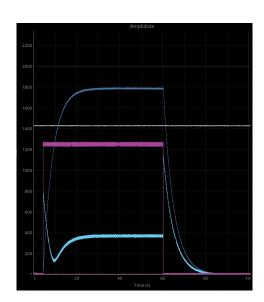
QPR




AMICI ETIAM Workshop on Vertical SRF Cavity Testing DESY 14 – 15.09.2022

Current and recently finished external projects

- ESS MB
- ESS HB
- POLFeL
- Another 1.3GHz cavities on request from industry

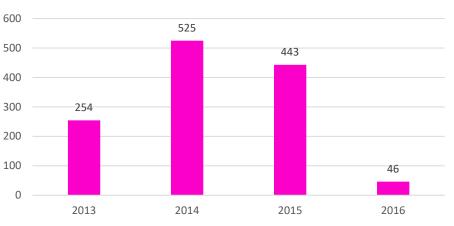


AMICI ETIAM Workshop on Vertical SRF Cavity Testing DESY 14 – 15.09.2022

Future plans

- Test stands
 - Switch test stand hardware to digital system (MTCA4)
 - B-mapping
 - Additional Xrays detectors (Gamma Spectrometer)
- Projects
 - PIP II
 - XFEL upgrade

Additional possibilities


- Change to other frequencies
 - Mechanical adaptation of the insert
 - Switch measurement hardware
 - Amplifier
 - Frequency shifter
 - Some passive elements (directional couplers, additional cabling etc...)
 - Personal interlock adaptation
- Cryogenic test of components in cryostat

Cavities testing in serial mode - XFEL

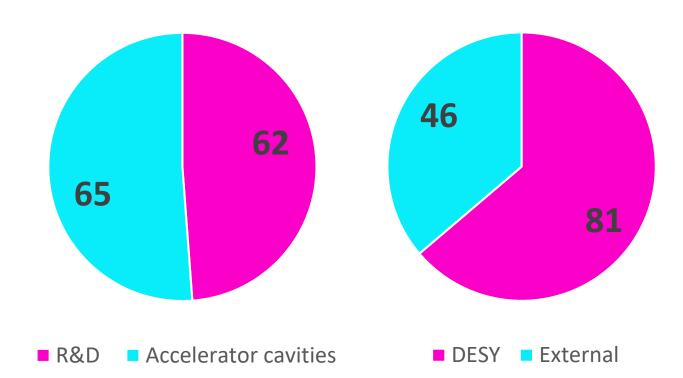
- 1276 VTs for serial XFEL cavities performed over 3,5 years
- In 2014 (testing peak) 525 Vertical tests performed
 - 10 VTs / week (including holidays, maintenance etc...)
- Special testing team working on 2 shifts

XFEL serial cavities Vertical tests

 IFAST

 ACCELERATOR

 ACCELERATOR


 ACCELERATOR

 COOPERATION AND INNOVATION

Last year (2021) VT summary

• 127 VT

- R&D single cells 50
- DESY 1.3GHz 9 cells 19
- SRF GUN 12
- ESS MB 12
- ESS HB 21
- Other 9-cells 1.3GHz 4
- POLFel 9

Summary

- In AMTF hall at DESY performing of cavity vertical test is a daily routine
 - Long time experience
 - Trained personnel
- Big cryostats give a lot of possibilities
- Test stands serve for both: R&D and accelerator cavities
- Currently 2 cavities types (1300 MHz, 704 MHz) can be measured
 - There is a possibility to switch to other frequency

ACCELERATOR AND MAGNET INFRASTRUCTURE FOR COOPERATION AND INNOVATION

THANK YOU VERY MUCH!!

This project has received funding from the European Union's Horizon 2020 Research and

Innovation programme under GA No 101004730.