

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.

Model of field emission and dark current simulation

Hamburg/14-15 sept 2022/Workshop on Vertical SRF Cavity Testing

Elisa Del Core/INFN - LASA

Introduction

What we currently used to analyze field emission:

External radiation detectors

A part of impact electron energy

is converted in X ray bremsstrahlung radiation.

The maximum x ray energy (endpoint) corresponds to

electron kinetic energy.

- Proportional counter: dose rate \rightarrow it (partially) mimics the power drained by electron dark current
- Scintillator (NaI(Tl)) → it gives the X Ray spectrum therefore allowing endpoint evaluation (a part from severe pile-up events)
- 2. Inner diagnostic:
 - electron pick-up
 - Photodiodes array
- 3. Cavity Q drop \rightarrow offers a way to evaluate the overall field emission power if this phenomenon is the dominant one in limiting the performance

Scintillator and proportional counter on cryostat cover

Problem: how to evaluate the REAL FE impact?

- *Field Emission* can be <u>invisible</u> to external detectors if impact energies are too low
- External detectors can view only a limited part of emission pattern.
- Difficult to localize "a priori" the activated emitter position. Inner detectors like photodiodes can help to reconstruct the pattern but a quantitative calibration of these sensors is still missing (but it's under way)
- *FE* can be coupled with other phenomena like secondary emission (multipacting), parasitic mode excitation, thermal induced quench in points with high impact current → these may complicate a full modeling of cavity behavior

Model of FE

Our goal is to exploit the experimental observables (*dose rate, energy endpoint and Q-drop*) to develop an self-consistent model of FE inside the cavity (*emitter position and size, field enhancement factor*)

Fishpact (2D model) \rightarrow electron energy and tracking

In this case Multipacting events are neglected (impact number = 1), so to simulate sheer field emission events: the electron "dies" after the first impact against cavity walls.

Pro/cons:

- Limited post-processing features
- No emission models available
- ... BUT noticeably faster than other more advanced program!

Steps

For each E_{acc} :

- 1) Several emitter sites are tested along the cavity profile
- 2) Electron current is modeled according to the Fowler Nordheim emission law
- 3) Colliding electrons trajectories are collected on a cavity surface region according to external detector angle of view
- 4) The simulated data are post-processed to obtain **overall electron impact energy spectrum** as function of E_{acc}
- The highest impact energy corresponds to maximum X-ray Bremsstrahlung Energy

\rightarrow 1st cross-check with experimental data: X-ray energy spectrum $\sigma(E)$

- Pfe depends on the emitter site area
- 5) P_{FE} (power drained by electron dark current) calculation by summing up on the whole cavity surface as a function of E_{acc}

$$P_{FE} = \frac{1}{T_{RF}} \sum_{i} N(\varphi_i) E(\varphi_i)$$

E: final impact energy

 Q_0 vs E_{acc} trend can be reconstructed

→ 2nd cross-check with experimental data: simulated Q compared to experimental Q

CASE STUDY – PIP II EZ-002 CAVITY

- 1st test: some MP with radiation, then sudden rise of radiation at 20.8 MV/m and testing instabilities
- Test repeated from low fields
- 2^{nd} test: same behavior as the 1^{st} test up to until 14 MV/m ...
- ... then, sudden rise of radiation and drop of Q_0
- Cavity quench at 23 MV/m with FE
- Irreversible activation of a field emitter!

 \rightarrow Ideal test bench to check the model self-consistency By means of P_{FE} computation

Assuming Q-degradation only due to FE, P_{FE} FE dissipated power, Q_0 low field Q, R/Q fixed parameter

FAST

$$\frac{1}{Q(E_{acc})} = \frac{1}{Q_0} + \frac{R}{Q} \frac{P_{FE}}{(E_{acc} l)^2}$$

value of E_{acc}

1011 Test #1 rad. • Test $#1 Q_0$ Test #2 rad. Test #2 On 100 [mSv/h 10^{-1} The Q variation only due $\circ^{\circ} 10^{10}$ adiation to Field Emission, 10^{-2} considering the same 10-3 10^{-4} 10^{9} 20 10 15 Eacc [MV/m]

CASE STUDY – PIP II EZ-002 CAVITY (2)

Conclusions

- A program to reconstruct field emission behavior has been developed starting from already existing Fishpact code
- The program allows also to evaluate some physical parameters corresponding to experimental observables like: *energy spectrum* and *total dissipated FE power* → *external dose evaluation* on progress

i. Analyticalii. Simulation with dedicated sofware

• The model self-consistency has been cross-checked thanks to the case of PIP-II cavity EZ-002 for which data are available with and without field emission: data for impact energy distributions and field emitting power are nearly coherent for every Eacc.

To do list:

- Model electron to photon count deconvolution so to exploit also dose rate measurements
- Evaluate Pile-up statistics for detector at high count rates
- Study model convergence when sampling with smaller phase steps so to find a trade-off between calculation speed and model accuracy

ACCELERATOR AND MAGNET INFRASTRUCTURE FOR COOPERATION AND INNOVATION

Thank You

This project has received funding from the European Union's Horizon 2020 Research and

Innovation programme under GA No 101004730.

Backup slides

AMICI ETIAM Workshop on Vertical SRF Cavity Testing DESY 14 – 15.09.2022

External radiation detectors

- Gas-filled (Xe) proportional counter (Thermo Electron FH 40-G) for dose measurement:
 - Measurement range from 100 nSv/h to 1 Sv/h
 - Continuous aquisition every 1 sec.
 - Energy range from 45 keV to 1 MeV \rightarrow poor sensitivity for higher energies
- NaI(Tl) scintillator (Ortec 905-3) for measuring X-ray spectrum
 - Maximum count rate 10⁶ counts/sec
 - Energy range from few keV to 10 MeV
 - Due to its high sensitivity to radiation, for high doses detector saturates producing count pile-up: screening with high Z material is needed!

İFAST

ACCELERATOR AND MAGNET INFRASTRUCTURE FOR COOPERATION AND INNOVATION

AMICI ETIAM Workshop on Vertical SRF Cavity Testing DESY 14 – 15.09.2022

Field Emission

• Emission of electrons induced by an electric field → electrons accelerated by RF fields until their impact on the surface

Field emission problems:

- Limits the accelerating gradient
- Degradation of the Q value
- Higher cryogenic consumption

X=0

Lasa VTS radiation scenario

• FLUKA model: 10⁷ electrons at 10 MeV hitting the cavity beam tube flange, then generating Bremsstrahlung X-rays, which are then attenuated by thermal shields, the cryostat cover, ecc

AMICI ET

- External detectors (NaI and tissue equivalent (*H*₂*O*)) to collect counts and dose rate
- Total counts in detector: ${}^{N_{det.}}/_{N_{tot}} \sim 10^{-4}$
- Energy deposited on detector: $E/E_{tot} \sim 10^{-6}$

Field enhancement β

→ Fit of Fowler-Nordheim equation

$$I \propto (\beta_{FN}E)^{2.5} e^{-B_{FN}\frac{\Phi^{3/2}}{\beta_{FN}E}}$$
$$dose \propto current$$
$$R \propto \frac{1}{T} \int N(E)E \ dE$$

$$\log \frac{R}{E^2} = \log A - \frac{B}{\beta E}$$

 $\beta \sim 250/300$

AMICI ETIAM Workshop on Vertical SRF Cavity Testing DESY 14 – 15.09.2022