

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.

Test stands in Uppsala University

I.FAST/AMICI/ETIAM workshop @ DESY

Akira Miyazaki on behalf of FREIA team

Outline

- Introduction of the FREIA laboratory
- Test stand 1: vertical cryostat GERSEMI
- Test stand 2: horizontal cryostat HNOSS
- Test stand 3: vertical cryostat µGERSEMI
- Summary of test stands
- Potential needs of cavities (1.3 GHz) for our future compact XFEL project

The FREIA team: experts from different field

FREIA infrastructure

R. Ruber et al 2021 JINST 16 P07039

Present main project: ESS double spoke modules

Test & assessment at FREIA laboratory in Uppsala

Assembly in IJCLab

9/13 modules approved \rightarrow Installation in ESS

Vertical cryostat GERSEMI

Operation on liquid bath or pressurized (with a 2K heat exchanger)

Superconducting test programs for HL-LHC

Double Quarter-wave crab cavity

LHC MCBC corrector magnet

Radiation shield and cavity insert

Radiation shield design

μSv/h ™

Mechanical design of the supporting structure

Magnetic field mapping after a magnet test

- Hold 3D axis fluxgate sensor (Bartington)
- Helmholtz coils around to compensate the ambient field
- Horizontal scan: -30 cm < x < 30 cm; -30 cm < y < 30 cm
- Vertical scan: -400 cm < z < 0 (cavity center: -290 cm; top flange: 0 cm)
 - \rightarrow Good to check the homogeneity of the magnetic field inside the cryostat

Horizontal cryostat HNOSS for jacketed cavities

Figure 2: left #1 (Romea); middle #2 (Giulietta); right #3 (Germaine)

- For a cavity with a helium jacket
- Ideal for **coupler testing**: FPC, HOM
- Multiple cavities may be tested at the same time

He-jacketed cavity testing at HNOSS

- Our LLRF card is equipped with Self-Excited-Loop (SEL) to lock critically coupled cavities
- Q vs E and other standard measurements can be performed in HNOSS if the cavities are equipped with He jackets

Cavity testing with power couplers & tuners

Cleanroom is available for SC activities

✓ A pick-up antenna falling off during transport was fixed in the cleanroom

μGERSEMI (aka "CoW") cryostat

FREIA Test stand 1 summary

GERSEMI					
No	Property name	Value	Unit	Comment	
1	LHe volume	3300	L	To be reduced	
2	Operating temperature	1.8-2.0	K	4K not stable	
3	Diameter / size	1.1 / 2.8	m		
4	Number of inserts	1 (+1)		+Magnet insert	
5	RF Frequency	352	MHz	To be upgraded	
6	Maximum Incident power	100	\mathbb{W}		
7	Additional instrumentation	3D fluxgate			
8	Typical testing rate (Vts / year)	0.5-1	Per month		
9	Possibility to test naked cavities	YES	YES/NO		
10	Infrastructure for small intervention	YES	YES/NO	Clean room ISO10	

FREIA Test stand 2 summary

HNOSS (Horizontal)					
No	Property name	Value	Unit	Comment	
1	LHe volume	He jacket only	L		
2	Operating temperature	1.8-2.0	К	4K not stable	
3	Diameter / size	1.2 / 3.3	m		
4	Number of inserts				
5	RF Frequency	352	MHz	To be upgraded	
6	Maximum Incident power	100	\mathbb{W}		
7	Additional instrumentation				
8	Typical testing rate (Vts/year)	0.5-1	Per month		
9	Possibility to test naked cavities	NO	YES/NO		
10	Infrastructure for small intervention	YES	YES/NO	Clean room ISO10	
IFAST					

ACCEL ERATOR AND MAGNET INFRASTRUCTURE FOR COOPERATION AND INNOVATION

FREIA Test stand 3 summary

μGERSEMI (Cow)					
No	Property name	Value	Unit	Comment	
1	LHe volume	47	L		
2	Operating temperature	4.2	К		
3	Diameter / size	0.26 / 0.635	m		
4	Number of inserts	1			
5	RF Frequency	352	MHz	To be upgraded	
6	Maximum Incident power	100	\mathbb{W}		
7	Additional instrumentation	3D fluxgate			
8	Typical testing rate (Vts/year)	3-4	Per month		
9	Possibility to test naked cavities	YES	YES/NO		
10	Infrastructure for small intervention	YES	YES/NO	Clean room ISO10	
IFAST					

Funding to support user R&D

Inverse Compton X-ray source "Ångström Laser"

- CW SRF cavities + high-power short pulsed IR laser
- Short pulsed X-ray with high repetition rate
- Future stage for coherent X-ray source
 - Seeding fine structure in a bunch by Grating + emittance exchange

We need state-of-the-art cavities soon

Foreseen Projects				
Project name (not obligatory)	Frequency	Amount of cavities	Operating temperature	Comment
Angstrom laser	1.3 GHz	1	1.8K - 2 K	3 cell, 40 MV/m
Angstrom laser	1.3 GHz	1	1.8K - 2 K	9 cell (TESLA), 40 MV/m

ACCELERATOR AND MAGNET INFRASTRUCTURE FOR COOPERATION AND INNOVATION

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.