

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.

SupraLab: SRF Testing Facilities at HZB

From Samples to Beam Operation

Sebastian Keckert, HZB

Workshop on Vertical Cavity Testing

DESY, 15.09.2022

SupraLab Philosophy

Link: SupraLab Website

- Key infrastructure designed for ARD/HZB research program
- Parts EFRE financed with the goal to open facilities for research laboratories and industrial partners
- Examples:
 - RI \rightarrow 1.3 GHz, 80 kW CW coupler RF testing
 - Rossendorf: TESLA cavity testing, SRF gun HPR, SRF gun testing
 - DESY: Superconducting dark current measurement system, superconducting solenoid (planned)
 - IN2P3, JLab, Cornell: RF characterization of samples (\rightarrow QPR)
 - Cryoelectra: SS RF transmitter operation with SRF systems (planned)
- Tests subject to resource limits and limited availability

miniVTS – cryogenic material studies

- Glass cryostat, very flexible, easily adapted
 - no radiation protection \rightarrow low power RF only
- Fully manual operation
 - LHe and/or LN₂ from dewars
 - Turnaround time few hours
 - Slow/fast cool-down/warm-up, parking
- No mag. shield, active 3D Helmholtz coils
- Recent examples:
 - Cryogenic sensor tests (B.Sc.)
 - \rightarrow GMR, carbon resistors
 - Trapped flux in sc samples (Ph.D)
 - \rightarrow B- and T-mapping

[F. Kramer, TUPOTK006, IPAC'22]

miniVTS – trapped flux in samples

	miniVTS @ HZB			
No	Property name	Value	Unit	Comment
1	LHe volume	20	L	
2	Operating temperature	1.6 K up to RT	К	
3	Diameter / size	Ø = 0.2, H = 0.6	m	Usable height
4	Number of inserts	2		
5	RF frequency	Broad band		Low power, no interlock, no radiation
	Magnetic background	Earth's field, <15 nT with active 3D HHC compensation		
	Radiation protection	n/a		
	Max. pressure	1.2	bar	
6	Maximum incident power	Depends on DUT		
7	Additional instrumentation	3D HHC, B-map, T-map		
8	Typical testing rate (Vts / year)	many		
9	Possibility to test naked cavities	YES		

QPR – Characterizing SRF properties

- Dedicated sample test cavity sample: Ø=75 mm, h≈100 mm
- 3 frequencies: 415, 850, 1290 MHz
- T_{sample} = 1.8 ... > 20 K
- $B_{max} \approx 120 \text{ mT}$ R_s meas. typ. limited by heating
- Measure R_S, B_{quench}, λ \rightarrow T_c, Δ , κ , RRR

QPR Samples – Interface Definition

FAST

D MAGNET INFRASTRUCTURE

AMICI ETIAM Workshop on Vertical SRF Cavity Testing DESY 14 – 15.09.2022

SVTS – Vertical Testing of Small Cavities

- 'standard' vertical bath cryostat
 - Ø = 0.56 m, H = 1.35 m
 - Double magnetic shielding, B < 1 μ T
 - $T_{min} \approx 1.5 \text{ K}$ 80 W @ 1.8 K available
- Diagnostics
 - Thermometry (2 ms for entire map)
 - 3D B-mapping (2 ms for entire map)
 - Second sound

AMICI ETIAM Workshop on Vertical SRF Cavity Testing DESY 14 – 15.09.2022

rkshop on Vertical ESY 14 – 15.09.20

T-map and B-map (not only for SVTS)

- 1-cell combined T and 3D B-map
- Capture movies with 2 ms resolution

AMICI ETIAM Workshop on Vertical SRF Cavity Testing DESY 14 – 15.09.2022 2.61

2.88

2.91

3.22

SVTS @ HZB				
No	Property name	Value	Unit	Comment
1	LHe volume	380	L	
2	Operating temperature	1.8 typ. 1.5 – 4.2	К	±30 μbar at T<2.2 K 80 W at 1.8 K
3	Diameter / size	Ø = 0.56, H = 1.35	m	Usable height
4	Number of inserts	3		1 for QPR only
	Magnetic background	< 1	μΤ	
	Radiation protection	≤ 5	Sv/h	
	Max. pressure	1.5	bar	
5	RF frequency	PF infrastructure		
6	Maximum incident power			
7	Additional instrumentation	T-map, B-map, second sound		
8	Typical testing rate (Vts / year)	15 tests in 2021 (mostly QPR tests)		
9	Possibility to test naked cavities	YES		

LVTS – Testing Large/Long Cavities

- Availability high, but large volume of helium required
 - Costs
 - Turnaround time several (?) weeks (currently only 1 insert available)
- JT-valve for operation with constant LHe level
- Pump stand mounted on insert
- Start in 2023

LVTS

- Availability high, but large volume of helium required
 - Costs
 - Turnaround time several (?) weeks (currently only 1 insert available)
- JT-valve for operation with constant LHe level
- Pump stand mounted on insert
- Start in 2023

		LVTS @ HZB		
No	Property name	Value	Unit	Comment
1	LHe volume	2000	L	
2	Operating temperature	1.8 typ. 1.5 – 4.2	К	±30 μbar at T<2.2 K 80 W at 1.8 K
3	Diameter / size	Ø=0.93, H=2.5	m	2.5m usable height
4	Number of inserts	1		
	Magnetic background	< 1	μΤ	
	Radiation protection	≤ 5	Sv/h	
	Max. pressure	3.2	bar	
5	RF Frequency	0.69 – 3.2	GHz	PLL only 1.3 + 1.5 GHz
6	Maximum Incident power	300	W	
7	Additional instrumentation	T-map, B-map, second sound		
8	Typical testing rate (Vts / year)	Currently in commissioning		
9	Possibility to test naked cavities	YES		

Component Testing

- Coupler testing and conditioning
- RF power capabilities
 - 80 kW at 500 MHz
 - 250 kW CW at 1.3 GHz
 - 15 kW CW at 1.3 GHz, 1.5 GHz, 1.75 GHz
- Virtual cavity
 - FPGA-based system mimics a real cavity
 → LLRF debugging

AMICI ETIAM Workshop on Vertical SRF Cavity Testing DESY 14 – 15.09.2022

HoBiCaT – Dressed Cavity Testing

- Up to 2x 9-cell dressed TESLA cavities (or 3x 2-cells)
- Flexible system also for component testing (closed LHe system!)
 - Tuner, piezos, SC solenoids
 - Cold bead pull
 - Second sound
 - .
- Several helium circuits available
 - 2 K with JT-valve
 - 4 K

HoBiCaT – Dressed Cavity Testing

AMICI ETIAM Workshop on Vertical SRF Cavity Testing DESY 14 – 15.09.2022

HoBiCaT @ HZB				
No	Property name	Value	Unit	Comment
1	LHe volume	few	L	
2	Operating temperature	1.8 typ. 1.5 – 4.2	К	±30 μbar at T<2.2 K 80 W at 1.8 K, 10 W static losses
3	Diameter / size	$\emptyset \approx 1$	m	2x 9-cell TESLA
4	Number of inserts	n/a		
	Magnetic background	< 5	μΤ	plus shield of DUT
	Radiation protection	≤ 5	Sv/h	
5	RF frequency	RP infrastructure *** N m Art. *** S m Art		
6	Maximum incident power	→ Seee • • • • • • • • • • • • • • • • •		
7	Additional instrumentation	second sound, cold bead pull,		
8	Typical testing rate (Vts / year)	< 10		
9	Possibility to test naked cavities	NO		

SEALab – Putting the Full System to the Test

- Commissioning of SRF photo-injector ongoing, high-QE cathode, laser system, highpower SRF booster coupler conditioning on track → first beam from injector in spring 2023
- Beam commissioning program in development to map out the injector's parameter space from short pulse-low charge via medium avg. current to the high charge regime
- Machine open for additional applications, contributes to the European ERL stragety for HEP

SEALab – Putting the Full System to the Test

Parameter	ERL	Injector/UED
Beam energy (MeV)	50	6.5-10/2
$I_{\rm avg}$ (mA)	100	6-10/0.0025
Laser freq. (MHz)	1300	50, 1300
RF freq. (MHz)	1300	1300
$\epsilon_{\rm norm}$ (mm mrad)	1 (0.6)	0.6/0.03
$\sigma_{\rm t}$ (ps)	2 (0.1)	0.02-2
Bunch charge (pC)	77	0.05-400

- SEALab offers potentially a large range of beam parameters due to its two photo-cathode laser systems (50 MHz, 1.3 GHz) and their macro-pulse capabilities
- As long as there is no Linac installed within the ERL reciculatory, this can be used as a passive beam (no effective acceleration) test stand
- Adaption to the existing cryogenic installations and particulate free installations are key for the success

SEALab – Putting the Full System to the Test

Example of local cleanroom for beam vacuum system

Site for RF only module teststand, currently VSRdemo

2x 4cell 1.5 GHz VSR Cavities equipped with power 30 coupler, operated by 15 kW solid state RF transmitters

RF Infrastructure

- SVTS, HoBiCaT
 - 400 450 MHz, 500 W CW
 - 690 3200 MHz, 300 W CW
 - 1.3 GHz, 15 kW CW
 - 1.5 GHz, 15 kW CW

LVTS

- 690 3200 MHz, 300 W CW
- Coupler tests, nc cavity tests, SEALab
 - 500 MHz, 80 kW CW
 - 1.3 GHz, 15 + 250 kW CW
 - 1.5 GHz, 15 kW CW
 - 1.75 GHz, 15 kW CW

Mobile devices

- 2.5 6.0 GHz, 90 W CW
- VNA up to 20 GHz

• PLL systems

...

- 420, 850, 1300 MHz → QPR
- 1.3 GHz
- 1.5 GHz coming soon

Supporting Infrastructure

- 2 clean rooms available
 - 100 m² (18m x 5.5m) with 63 m² ISO-4 (9m x 7m)
 - 44 m², with 23 m² ISO-5 (5.1m x 4.4 m)
 - HPR, US-bath for large cavities
- Mobile pump stations for automated slow clean pumping and venting
- SRF Materials Lab
 - Laser Scanning Microscope
 - Optical Microscope
 - BCP setup
 - (only small volumes and very limited availability)
 - Machines for sample cutting and grinding
 - Quartz tube furnace (1100°C, Ø=190mm, hot zone ~500 mm, total 2 m)

Key Issues

- Small interventions are possible, but limited by available personnel
- SVTS and HoBiCaT share the same rad. prot. bunker
- SVTS, LVTS, HoBiCaT: LHe cannot be pumped in parallel (upgrade work ongoing for more flexibility)
- "Standard Tests" that require no modification are fairly easy... but slots are limited by the availability of infrastructure
- Non-standard tests: Interface definition is key
 - Ideally, "user" comes with plug-and-play system pre-configured to interface with the existing system
 - e.g. coupler testing for RI

ACCELERATOR AND MAGNET INFRASTRUCTURE FOR COOPERATION AND INNOVATION

Thank you for your attention!

This project has received funding from the European Union's Horizon 2020 Research and

Innovation programme under GA No 101004730.

bERLinPro/SEALab: A quick orientation

- bERLinPro is located in a sub-terranous radiation protection shelter
- All technical infrastructure, besides the klystron and some cryogenic installations are above ground in a technical hall