The Higgs in the Standard Model: status and perspectives.

Abdelhak Djouadi (U. Paris-Sud / CERN TH)

1. The Higgs in the Standard Model

2. Higgs decays

3. The Higgs at the Tevatron: predictions and uncertainties

4. The Higgs at the LHC

5. Conclusion

The Higgs in the SM – A. Djouadi – p.1/21

1. The Higgs in the SM: EWSB

To generate particle masses in an SU(2)×U(1) gauge invariant way: introduce a doublet of scalar fields $\Phi = \begin{pmatrix} \Phi^+ \\ \Phi^0 \end{pmatrix}$ with $\langle 0 | \Phi^0 | 0 \rangle \neq 0$

$$\begin{split} \mathcal{L}_{\mathbf{S}} &= \mathbf{D}_{\mu} \Phi^{\dagger} \mathbf{D}^{\mu} \Phi - \mu^{2} \Phi^{\dagger} \Phi - \lambda (\Phi^{\dagger} \Phi)^{2} \\ \mathbf{v} &= (-\mu^{2}/\lambda)^{1/2} = 246 \; \mathrm{GeV} \\ \Rightarrow \text{ three d.o.f. for } \mathbf{M}_{\mathbf{W}^{\pm}} \text{ and } \mathbf{M}_{\mathbf{Z}} \\ \text{For fermion masses, use } \underline{same} \; \Phi \text{:} \\ \mathcal{L}_{Yuk} &= -\mathbf{f}_{\mathbf{e}}(\mathbf{\bar{e}}, \mathbf{\bar{\nu}})_{\mathbf{L}} \Phi \mathbf{e}_{\mathbf{R}} + \dots \end{split}$$

The residual degree corresponds to the spin-zero Higgs particle, H.

- ullet The Higgs boson: $J^{\mathrm{PC}}=0^{++}$ quantum numbers.
- Masses and self–couplings from $V: M_{H}^{2}\!=\!2\lambda v^{2}, g_{H^{3}}=3\frac{M_{H}^{2}}{v},...$
- Higgs couplings \propto particle masses: $g_{Hff} = \frac{m_f}{v}, g_{HVV} = 2\frac{M_V^2}{v}$ Since v is known, the only free parameter in the SM is M_H (or λ).

1. The Higgs in the SM: constraints on $\rm M_{H}$

Theory constraints from energy/ $M_{f H}$ range up to which the SM is valid

Heavy Higgs: strong W/Z interactions

$$\begin{split} |A_0(VV \to VV)| \stackrel{s \gg M_H^2}{\longrightarrow} \frac{M_H^2}{8\pi v^2} < \frac{1}{2} \\ \Rightarrow M_H \lesssim 710 \; GeV \end{split}$$

(OK with lattice: $\mathbf{M_{H}} \lesssim \mathbf{650~GeV})$

$$egin{aligned} |\mathbf{A_0}(\mathbf{VV}
ightarrow \mathbf{VV})| & \stackrel{\mathrm{s} \ll \mathbf{M}_{\mathbf{H}}^2}{\longrightarrow} rac{\mathrm{s}}{32\pi \mathbf{v}^2} < rac{1}{2} \ & \Rightarrow \sqrt{\mathrm{s}} \lesssim 1.2 \ \mathrm{TeV} \end{aligned}$$

• Triviality and stability bounds: $\lambda(\mathbf{Q}^2) \approx \lambda(\mathbf{v}^2) \left[1 - \frac{3}{4\pi^2} \lambda(\mathbf{v}^2) \log \frac{\mathbf{Q}^2}{\mathbf{v}^2} \right]^{-1} \overset{\circ}{\overset{\circ}_{\mathbf{U}}} \overset{\circ}{\overset{\circ}_{\mathbf{U}}}$ $\lambda \gg 1 \text{ coupling blows up (Landau pole) } \overset{\scriptscriptstyle H}{\underset{\mathbf{M}}{\overset{\circ}{\overset{\circ}_{\mathbf{U}}}}}$ $\lambda \ll 1 \text{ potential unstable (no EWSB)}$ $\Lambda \sim 1 \text{ TeV} : 70 \lesssim M_H \lesssim 700 \text{ GeV}$ $\Lambda \sim M_{GUT} : 130 \lesssim M_H \lesssim 180 \text{ GeV}$

Hambye+Riesselman

1. The Higgs in the SM: constraints on $\mathbf{M}_{\mathbf{H}}$

Indirect constraints from high-precision data

H contributes to RC to W/Z masses:

w/z w/z W/Z

Fit the EW precision measurements: one obtains $M_H=87^{+35}_{-26}$ GeV, or $M_H\lesssim 157$ GeV at 95% CL New Gfitter: $M_H\lesssim 153$ GeV@95%CL

?What top mass should be in the fit? High precision data: on–shell mass Tevatron: OS, $\overline{M}S$ mass? 10 GeV diff. $m_t^{OS} = m_t^{\overline{M}S}(\mu) (1 - \frac{\alpha_s}{\pi} [\frac{4}{3} + \log \frac{\mu^2}{m_t^2} + ..])$ $\overline{M}S$ top mass from NNLO $\sigma(p\bar{p} \rightarrow t\bar{t})$ convert to $m_t^{pole} \approx 169 \pm 3.5$ GeV Bonn, 18/10/2010

1. The Higgs in the SM: constraints on $\mathbf{M}_{\mathbf{H}}$

Constraints from Higgs non-observation at colliders (LEP/Tevatron). CL • Direct searches at LEP: LEP 10 H looked for in $e^+e^-\!\rightarrow\! ZH$ Z* 10 e^+ 10 Observed Expected for background \mathbf{Z}^* 10 e 10 115.3 We have a limit at 95% CL: 10 106 108 110 112 $M_{
m H} > 114.4$ GeV $M_{H}(GeV)$ Tevatron Run II Preliminary, <L> = 5.9 fb • New results from the Tevatron: 95% CL Limit/SM **EP Exclusion** Tevatron Exclusion 10 Mainly: $gg \rightarrow H \rightarrow WW \rightarrow \ell\ell\nu\nu$ Expected Observed ±1σ Expected 2σ Expected 0000 g н Q 1 SM=1 0000 **Tevatron Exclusio** July 19, 2010 exclude $\mathrm{M_{H}}\!=\!158\!-\!175~\mathrm{GeV}$ 100 110 120 130 140 150 160 170 180 190 200 $m_{\mu}(GeV/c^2)$ (to be discussed in detail later). Bonn, 18/10/2010 The Higgs in the SM – A. Djouadi – p.5/21

2. Higgs decays

Higgs couplings proportional to particle masses: once $M_{f H}$ is fixed,

- the profile of the Higgs boson is determined and its decays fixed,
- the Higgs has tendancy to decay into heaviest available particle.

$$\begin{split} & H \rightarrow f\overline{f}: \Gamma = \frac{G_{\mu}N_{c}}{4\sqrt{2}\pi}M_{H}m_{f}^{2}\beta_{f}^{3} & H \qquad H^{+}\mu^{-} \text{ and eventually } t\overline{t} & H \qquad f\overline{t} \text{ is } t \text{ if } t \text{ b,} t, \tau \\ & \text{ only } b\overline{b}, c\overline{c}, \tau^{+}\tau^{-}, \mu^{+}\mu^{-} \text{ and eventually } t\overline{t} & H \qquad f\overline{t} \text{ if } t \text{ b,} t, \tau \\ & \text{ only } b\overline{b}, c\overline{c}, \tau^{+}\tau^{-}, \mu^{+}\mu^{-} \text{ and eventually } t\overline{t} & H \qquad f\overline{t} \text{ if } t \text{ b,} t, \tau \\ & \text{ only } b\overline{b}, c\overline{c}, \tau^{+}\tau^{-}, \mu^{+}\mu^{-} \text{ and eventually } t\overline{t} & H \qquad f\overline{t} \text{ if } t \text{ b,} t, \tau \\ & \text{ only } b\overline{b}, c\overline{c}, \tau^{+}\tau^{-}, \mu^{+}\mu^{-} \text{ and eventually } t\overline{t} & H \qquad f\overline{t} \text{ if } t \text{ bloch } t \\ & \text{ only } b\overline{b}, c\overline{c}, \tau^{+}\tau^{-}, \mu^{+}\mu^{-} \text{ and eventually } t\overline{t} & H \qquad f\overline{t} \text{ if } t \text{ bloch } t \\ & \text{ only } b\overline{b}, c\overline{c}, \tau^{+}\tau^{-}, \mu^{+}\mu^{-} \text{ and eventually } t\overline{t} & H \qquad f\overline{t} \text{ if } t \\ & \text{ only } b\overline{b}, c\overline{c}, \tau^{+}\tau^{-}, \mu^{+}\mu^{-} \text{ and eventually } t \\ & \text{ also direct } QCD (3-loops) \text{ and } EW (1-loop). & H \qquad f\overline{t} \text{ if } t \\ & \text{ H} \rightarrow VV \text{ If } f = \frac{G_{\mu}M_{H}^{3}}{16\sqrt{2}\pi}\delta_{V}\beta_{V}(1-4\frac{M_{V}^{2}}{M_{H}^{2}}+12\frac{M_{V}^{4}}{M_{H}^{4}}) & H \qquad f\overline{t} \text{ if } t \\ & \text{ above } 2M_{Z} \text{ th. dominant: } BR(WW) \text{ only } \text{ above } 2M_{Z} \text{ th. dominant: } BR(WW) \text{ only } \text{ above } 2M_{Z} \text{ th. dominant: } BR(WW) \text{ only } \text{ if } t \\ & \text{ below th. decays possible/important } (m_{b} \ll M_{V})! & H \qquad f\overline{t} \text{ only } t \\ & \text{ H} \rightarrow gg(\gamma\gamma, Z\gamma \text{ loop induced } \propto \mathcal{O}(\alpha_{s}^{2}/\alpha^{2}) \text{ the easy particles do not decouple! mainly } t(W) \text{ loops } \\ & \text{ H} \rightarrow gg: \text{ large } (\#2) \text{ RC; reverse of } gg \rightarrow H! & H \\ & \text{ H} \rightarrow \gamma\gamma \text{ : much smaller } (\propto \alpha^{2}/\alpha_{s}^{2}) \text{ but clean!} & H \qquad f\overline{t} \text{ only } t \text$$

HDECAY: AD, Kalinowski, Spira (95–10). Includes all relevant higher orders.

The Higgs in the SM – A. Djouadi – p.7/21

Bonn, 18/10/2010

The Higgs in the SM – A. Djouadi – p.8/21

2. Higgs decays: theory uncertainties

However: there are theoretical uncertainties....

ullet Input quark masses in ${f H} o bb, car c$ $\mathbf{M}_{\mathbf{O}}^{\mathbf{pole}} \to \overline{\mathbf{m}}_{\mathbf{Q}}(\mu = \mathbf{M}_{\mathbf{H}})$ $-\overline{m}_{b}(M_{b}) = 4.19^{+0.036}_{-0.012}$ GeV $-\,\overline{m}_{c}(M_{c}) = 1.27^{+0.014}_{-0.018}$ GeV • Theory+experimental error on α_s : $lpha_{
m s}({
m M_{
m Z}^2}) = 0.1171 \pm 0.0028$ @NNLO • Scale error: measure of higher orders $\frac{1}{2}M_{H} \leq \mu \leq 2M_{H}$ • Scale and $\alpha_{\mathbf{s}}$ errors in $\mathbf{H} \to \mathbf{g}\mathbf{g}$ $\Gamma(\mathbf{H} \to \mathbf{gg}) \propto \alpha_{\mathbf{s}}^{\mathbf{2}} + \mathbf{large} \ \mathcal{O}(\alpha_{\mathbf{s}}^{\mathbf{3}})$ • No uncertainty on $H \rightarrow \tau \tau$, WW, ZZ

(QCD effects appear at high orders).

2. Higgs decays: theory uncertainties

However: there are theoretical uncertainties....

Include all items \Rightarrow large uncertainties!

esp. for $M_h\approx$ 120–150 GeV: 10–30% for $H\rightarrow b\overline{b}$ and $H\rightarrow WW^*$

3. The Higgs at the Tevatron

 $\begin{array}{l} \bullet \ M_{H} \gtrsim 140 \ GeV: \ gg \rightarrow H \\ \mbox{(with } H \rightarrow W^{*}W^{*} \rightarrow \ell\ell\nu\nu \mbox{)} \end{array}$

LO^a already at one loop exact NLO^b : K \approx 2 (1.7) EFT NLO^c: good approx. QCD: EFT NNLO^d: K \approx 3 (2) EFT NNLL^e: \approx +10% (5%) EFT NLO EW^f: \approx ± very small exact NLO EW^g: \approx ± a few % EFT NNLO QCD+EW^h: a few %

^aGeorgi et al., Ellis et al, Wilczek
 ^bSpira+AD+Graudenz+Zerwas (exact)
 ^cAD, Spira, Zerwas; Dawson (EFT)
 ^dHarlander+Kilgore, Anastasiou+Melnikov
 Ravindran+Smith+van Neerven
 ^eCatani+de Florian+Grazzini+Nason
 ^fAD,Gambino; Degrassi et al.
 ^gActis+Passarino+Sturm+Uccirati
 ^hAnastasiou+Boughezal+Pietriello
 Bonn, 18/10/2010

The Higgs in the SM – A. Djouadi – p.11/21

3. Higgs at the Tevatron: production

 $\begin{array}{ll} \bullet \ M_H \lesssim 140 \ GeV: \ q\bar{q} \rightarrow HV \\ q\bar{q} \rightarrow HW \rightarrow b\bar{b}\ell\nu \\ q\bar{q} \rightarrow HZ \rightarrow b\bar{b}\ell\ell, b\bar{b}\nu\bar{\nu} \\ q\bar{q} \rightarrow HW \rightarrow \ell\ell\ell\nu\nu\nu \\ \mathsf{LO}^a: \equiv \sigma(\mathbf{V}^*) \times \mathsf{BR}(\mathbf{V}^* \rightarrow \mathbf{VH}) \\ \mathsf{exact} \ \mathsf{NLO} \ \mathsf{QCD}^b: \mathbf{K} \approx 1.4 \\ \mathsf{exact} \ \mathsf{NNLO} \ \mathsf{QCD}^c: \mathbf{K} \approx 1.5 \\ \mathsf{exact} \ \mathsf{NLO} \ \mathsf{EW}^d \qquad :\approx -5\% \end{array}$

In practice combine ggH+HZ/HW

- $p\overline{p} \rightarrow Hqq$: bkg. too high.
- $p\overline{p} \rightarrow Ht\overline{t}$: rates too low.

 ^aGlashow, Nanopoulos, Yildiz
 ^bAltarelli et al; Han, Willenbrock
 ^cHamberg+van Neerven+Matsuura; Brein+AD+Harlander
 ^dCiccolini+Dittmaier+Krämer

Bonn, 18/10/2010

The Higgs in the SM – A. Djouadi – p.12/21

3. Higgs at Tevatron: focus on $gg \rightarrow H$

• The K factors are extraordinarily large:

good: this is what makes the Tevatron sensitive to the SM Higgs! bad: perturbation theory almost jeopardized as $\sigma_{LO} \approx \sigma_{NLO} \approx \sigma_{NNLO}$. uggly: higher order (HO) corrections might be very important...

- NNLL corrections known only for inclusive cross section σ_{tot} :
- $\sigma_{\rm cuts}$ used experimentally is known only at NNLO^a: stick to NNLO.
- NNLL corrections mimicked by using central scale $\mu_0 = \frac{1}{2}M_H$.
- in fact, NNLO only in EFT approach (no b-loop); exact only at NLO^b.
- K in σ_{tot} and σ_{cuts} different^c by \approx 25%: K_{cuts}^{nnlo} =2.6 vs K_{tot}^{nnlo} =3.3.
- Other remarks:
- Starting point of calculation: HIGLU (M. Spira) based on Ref. [b].
- Recent updates $^{\prime}$ for $gg \rightarrow H$ (2009) but not for $p \bar{p} \rightarrow HV$ (2004).
- Distributions not discussed, see Ref. [c]; no background neither.

 ^aCatani+Grazzini (HNNLO), Anastasiou+Melnikov+Petriello (FEHIP)
 ^bSpira+AD+Graudenz+Zerwas (exact NLO)
 ^cAnastasiou, Dissertori, Grazzini, Stökli, Webber (2009)
 ^dde Florian+Grazzini; Anastasiou+Boughezal+Pietriello; Ahrens et al;

3. Higgs at Tevatron: higher orders and scale variation

Higher orders (HO) guessed by varying $\mu_{\mathbf{R}}, \mu_{\mathbf{F}}$ arround central scale $\mu_{\mathbf{0}} = \frac{1}{2} \mathbf{M}_{\mathbf{H}}$: $\mu_0/\kappa \le \mu_{\mathbf{R}}, \mu_{\mathbf{F}} \le \kappa \mu_0$ (only a guess, not a true measure!) In general, when small HO, $\kappa = 2$ enough (this is the case for $q \overline{q}
ightarrow HV$ e.g.). Here: $K_{HO} \approx 3$ and PTh almost ruined. HO beyond NNLO might be still large: \Rightarrow guess scale domain from σ_{LO} For σ_{LO} band to catch σ_{NNLO} value \Rightarrow one needs at least $\kappa = 3$ Apply variation with $\kappa = 3$ for σ_{NNLO} pprox 20% scale uncertainty on $\sigma_{
m NNLO}$ (compared to pprox 10% for $\sigma_{
m NNLL}$ + κ = 2) compensates for 30% diff. $K_{cuts}vs K_{tot}$.

3. Higgs at Tevatron: PDFs and $\alpha_{\rm s}$

PDF uncertainties estimated using the 2x20 MSTW PDF sets including errors. \Rightarrow 5–10% PDF error (idem for CTEQ) However, also other sets: HERA, ABKM, JR, which are also at NNLO, so let us try: \Rightarrow very large differences!! (# is also a measure of the PDF error...) Pb: $\sigma_{LO} = \mathcal{O}(\alpha_s^2)$,..., $\sigma_{NNLO} = \mathcal{O}(\alpha_s^4)$ and $\alpha_s(\mathbf{M}_{\mathbf{Z}}^2)$ =0.1171 \pm 0.0034 (90%CL) MSTW has new set up with $\Delta^{exp} \alpha_s$ in. Not enough: also $\Delta^{\rm th} \alpha_{\rm s} \approx$ 0.002 (NNLO) Include all: PDF+ $\Delta^{exp}\alpha_s$ \oplus PDF+ $\Delta^{th}\alpha_s$ **MSTW/ABKM** now consistent (not HERA!). But total PDF error is now \approx 15–20% ! (compared with \approx 5% for PDF alone).

Bonn, 18/10/2010

The Higgs in the SM – A. Djouadi – p.15/21

140

120

130

150 160 170 180

 $M_H [GeV]$

190

200

3. Higgs at Tevatron: EFT approach at NNLO

To simplify (hard!) NNLO calculation EFT approach where $M_{\rm loop}\gg M_{\rm H}$ Good for t–loop (see R. Harlander) Not good for b–loop (\approx 10% at LO) Estimate error from NLO (known exactly)

$$\begin{split} \Delta_b^{NNLO} &: \frac{\sigma_{exact}^{NLO} - \sigma_{EFT}^{NLO}}{\sigma_{exact}^{NLO}} \times \frac{K_{NLO}}{K_{NNLO}} \\ \text{In addition: } m_b^{pole} \text{ or } m_b^{\overline{M}S}(m_b) \text{?} \end{split}$$

Uncertainty of a few percent...

$$\begin{split} & \text{Mixed EW+QCD RadCor at NNLO:} \\ & \text{EFT approach with } M_{W/Z} \gg M_H \\ & \text{Contrib.} \equiv \text{to EW NLO in } \# \text{ schemes} \\ & \Delta_{EW}^{\text{NNLO}}: \frac{\sigma_{\text{complete factor.}}^{\text{NLO-EW}} - \sigma_{\text{partial factor.}}^{\text{NLO-EW}}}{\sigma_{\text{complete factor.}}^{\text{NLO-EW}}} \end{split}$$

Uncertainty of a few percent (\lesssim 3.5%)

Bonn, 18/10/2010

The Higgs in the SM – A. Djouadi – p.16/21

3. Higgs at Tevatron: combination

Next very important issue: how to combine these theoretical errors? – add scale and PDF not in quadrature! (no stat ground; both have flat prior!) Reasonable way: calculate $\max_{\min} \sigma(\mu_{\mathbf{F}/\mathbf{R}})$ and apply on them PDF+ $\Delta^{ex+th}\alpha_s$ errors In $gg \rightarrow H$: $\approx \pm$ 40% total uncertainty much larger than assumed by CDF/D0 In $\mathrm{p} \bar{\mathrm{p}}
ightarrow \mathrm{HV} :\approx \pm$ 10% uncertainty smaller than $gg \rightarrow H$ but x2 CDF/D0 error. Don't forget the error on the Higgs BR's! (to be added linearly to those on σ) Combination of all channels:

- assume same acceptance for all channels
- assume no effect of CDF/D0 theory error

No Higgs mass is excluded with errors!

4. The Higgs at the ℓHC

ℓ HC: $\sqrt{s} = 7 \text{ TeV}, \int \mathcal{L} = 1 \text{ fb}^{-1}$ Same production as at Tevatron: – rates \approx 10 times higher much larger backgrounds – much lower luminosity: $1\,{ m fb^{-1}}$ Only: $gg \rightarrow H \rightarrow W^*W^* \rightarrow \ell\ell\nu\nu$ (\approx 200 of Higgs signal events) – Hqq, Htt hopeless – to much bckg from Wbb,Zbb (?) 10 **Compared to the Tevatron case:** • Smaller HO: $K_{NNLO} = 2, 5$ • Scale: κ =2 enough \Rightarrow 15% • PDF errors smaller, \approx 10% 0.1 • Again 5% error from EFT • Include error on BR(H \rightarrow WW) 0.01

Bonn, 18/10/2010

4. The Higgs at the ℓ HC

$$\ell$$
HC: $\sqrt{s} = 7 \text{ TeV}, \int \mathcal{L} = 1 \text{ fb}^{-1}$

Same production as at Tevatron:

- rates pprox 10 times higher
- much larger backgrounds
- much lower luminosity: $1\,fb^{-1}$

Only: $gg \rightarrow H \rightarrow W^*W^* \rightarrow \ell\ell\nu\nu$

(pprox 200 of Higgs signal events)

Compared to the Tevatron case:

- \bullet Smaller HO: $K_{\rm NNLO}\!=\!2,5$
- Scale: κ =2 enough \Rightarrow 15%
- PDF errors smaller, pprox10%
- Again 5% error from EFT
- \bullet Include error on BR($H \rightarrow WW$)

Combined uncertainty $\approx\pm$ 30% excludes $M_{H}\!\approx\!150\!-\!190$ GeV

The Higgs in the SM – A. Djouadi – p.19/21

4. The Higgs at the (full) LHC

Bonn. 18/10/2010

gluon-gluon fusion: $\mathbf{gg} \rightarrow au au, \mathbf{b} \overline{\mathbf{b}}, \mathbf{t} \overline{\mathbf{t}}$ hopeless $\mathbf{gg}
ightarrow \mathbf{H}
ightarrow \gamma \gamma$ (below $\mathbf{M_{H}} pprox$ 150 GeV) $\mathbf{gg}
ightarrow \mathbf{H}
ightarrow \mathbf{ZZ^*}
ightarrow 4\ell$ (130–500 GeV) $\mathbf{gg}
ightarrow \mathbf{H}
ightarrow \mathbf{WW}
ightarrow \ell
u \ell
u$ (130–200 GeV) $\mathbf{H}
ightarrow \mathbf{ZZ}, \mathbf{WW}
ightarrow \mathbf{jj} \! + \! \ell$ (above 500 GeV) **Vector boson fusion:** S/B \sim 1 after standard VBF cuts $\mathbf{pp} \to \mathbf{H} \to \tau \tau, \gamma \gamma, \mathbf{ZZ}^*, \mathbf{WW}^*$ Association with top pairs: $H \rightarrow \gamma \gamma$ bonus, $H \rightarrow bb$ hopeless? **Association with W,Z:** jet substructure; measurements?

LHC: $\sqrt{s}=7+7=14 \text{ TeV} \Rightarrow \sqrt{s}_{eff} \sim \sqrt{s}/3 \sim 5 \text{ TeV}^{-1}$ $\mathcal{L} \sim 10 \text{ fb}^{-1}$ first years and 100 fb⁻¹ later

Only question: when?

The Higgs in the SM – A. Djouadi – p.20/21

5. Conclusion

The LHC will tell.

Bonn, 18/10/2010

The Higgs in the SM – A. Djouadi – p.21/21