Transverse Momentum Dependent Fragmentation Functions from recent BELLE data

J Osvaldo Gonzalez-Hernandez University of Turin & INFN Turin

In collaboration with M. Boglione & A. Simonelli

PB TMD meeting 2022

UNIVERSITÀ DEGLI STUDI DI TORINO

Based on :

M. Boglione, J. O. Gonzalez-Hernandez, and A. Simonelli (2022), 2206.08876.

Outlook

• Theoretical framework for e+e- -> h X

• Global fits

Phenomenological analysis of recent BELLE data

$$\begin{split} \frac{d\sigma^{\mathrm{NLO, NLL}}}{dz_{h} dT dT dP_{T}^{2}} &= \\ &= -\sigma_{B} \pi N_{C} \frac{\alpha_{S}(Q)}{4\pi} C_{F} \frac{3 + 8 \log (1 - T)}{1 - T} \exp \left\{ -\frac{\alpha_{S}(Q)}{4\pi} 3C_{F} (\log (1 - T))^{2} \right\} \times \\ &\times \sum_{f} e_{f}^{2} \int \frac{d^{2} \vec{b}_{T}}{(2\pi)^{2}} e^{i\frac{\vec{p}_{T}}{z_{h}} \cdot \vec{b}_{T}} \widetilde{D}_{1,H/f}^{\mathrm{NLL}}(z_{h}, b_{T}, Q, (1 - T) Q^{2}) \left[1 + \mathcal{O} \left(\frac{M_{H}^{2}}{Q^{2}} \right) \right] \\ \widetilde{D}_{1,H/f}(z, b_{T}; \mu, \zeta) &= \frac{1}{z^{2}} \sum_{k} \int_{z}^{1} \frac{d\rho}{\rho} d_{H/k}(z/\rho, \mu_{b}) \left[\rho^{2} \mathcal{C}_{k/f} (\rho, \alpha_{S}(\mu_{b})) \right] \times \\ &\quad \mathrm{TMD \ at \ reference \ scale} \\ &\times \exp \left\{ \frac{1}{4} \widetilde{K}(b_{T}^{*}; \mu_{b}) \log \frac{\zeta}{\mu_{b}^{2}} + \int_{\mu_{b}}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_{D}(\alpha_{S}(\mu'), 1) - \frac{1}{4} \gamma_{K}(\alpha_{S}(\mu')) \log \frac{\zeta}{\mu'^{2}} \right] \right] \\ &\quad \mathrm{Perturbative \ Sudakov \ Factor} \\ &\times \underbrace{(M_{D})_{j,H}(z, b_{T}) \exp \left\{ -\frac{1}{4} g_{K}(b_{T}) \log \frac{z_{h}^{2} \zeta}{M_{H}^{2}} \right\}. \\ &\quad \mathrm{Non-Perturbative \ content} \end{split}$$

M. Boglione, A. Simonelli, Eur. Phys. J. C 81 (2021)

 $\frac{d\sigma}{dP_T} = d\widehat{\sigma} \otimes D^{\star}(.$

 $D = D^* \sqrt{M_S}$

M. Boglione, A. Simonelli, Eur. Phys. J. C 81 (2021)

Same constraints to collinear FF

$$g_K(b_T) = \widetilde{K}(b_T^\star; \mu) - \widetilde{K}(b_T; \mu)$$

Same function for non-perturbative evolution

 $\frac{d\sigma}{dP_T} = d\widehat{\sigma} \otimes D^{\star}(.$

 $D = D^* \sqrt{M_S}$

What is the effect of the collinear FFs (and PDFs in general) ?

Large-bT behaviour of gK ?

M. Boglione, A. Simonelli, Eur. Phys. J. C 81 (2021)

$$e^+e^- \to hX$$

 $\frac{d\sigma}{dP_T} = d\widehat{\sigma} \otimes \mathbf{D}^\star$

Possible roadmap

Extraction of the unpolarized TMD FF, D*, for charged pions from BELLE data (using factorization definition)

Two non-perturbative functions: D*, known from step 1 Soft Model M_s

3. SIDIS

1.

Three non-perturbative functions in the cross section D*, known from step 1. Soft Model M_s , known from step 2.

Extraction of the TMD PDF, F* (in the factorization definition, $F^* \neq F$).

Must consider:

- Which collinear functions are more appropriate?
- Which regions in bT are being mapped by extractions.
- Constraints of bT-behaviour for TMDs.
- Physical pictures/theoretical arguments /models (not parametrizations)
- Non perturbative evolution (gK) should be consistent with SIDIS, DY, e+e- two-hadron production.

Phenomenological analysis of recent BELLE data

BELLE data overview

$$e^+e^- \to hX$$

(Charged pions)

Binned in PT, zh and T (thrust)

Q=10.6 GeV

0.06<PT<2.5 GeV

0.125<zh<0.975 (18 bins)

0.6<T<0.975. (6 bins)

PT/zh<0.15 Q

For our analysis

0.375<zh<0.725. (8 bins)

0.750<T<0.875. (3 bins)

• We compare results obtained with NNFFnIo and JAM20nIo

$$\widetilde{D}_{1,H/f}(z, b_T; \mu, \zeta) = \frac{1}{z^2} \sum_k \int_z^1 \frac{d\rho}{\rho} d_{H/k}(z/\rho, \mu_b) \left[\rho^2 \mathcal{C}_{k/f}(\rho, \alpha_S(\mu_b)) \right] \times$$

$$\text{TMD at reference scale}$$

$$\times \exp\left\{ \frac{1}{4} \widetilde{K}(b_T^*; \mu_b) \log \frac{\zeta}{\mu_b^2} + \int_{\mu_b}^{\mu} \frac{d\mu'}{\mu'} \left[\gamma_D(\alpha_S(\mu'), 1) - \frac{1}{4} \gamma_K(\alpha_S(\mu')) \log \frac{\zeta}{\mu'^2} \right] \right\}$$

$$\text{Perturbative Sudakov Factor}$$

$$\times (M_D)_{j,H}(z, b_T) \exp\left\{ -\frac{1}{4} g_K(b_T) \log \frac{z_h^2 \zeta}{M_H^2} \right\}.$$

$$\text{Non-Perturbative content}$$

• We compare results obtained with NNFFnlo and JAM20nlo

• We compare results obtained with NNFFnlo and JAM20nlo

Nomenclature	$M_{\rm D}$ -model	parameters	
z_h -independent models			
1)Exponential-q	$e^{-(M_0b_{ m T})^q}$	M_0, q	
2)Bessel-K	$\frac{2^{2-p}(b_{\rm T}M_0)^{p-1}}{\Gamma(p-1)}K_{p-1}(b_{\rm T}M_0)$	M_0, p	

Proxy models: performed fits at fixed T=0.875. One INDEPENDENT fit for each zh-bin in the range 0.375<zh<0.725.

Nomenclature	$M_{\rm D}$ -model	parameters
z_h -independent models		
1)Exponential-q	$e^{-(M_0b_{ m T})^q}$	M_0,q
2)Bessel-K	$\frac{2^{2-p}(b_{\rm T}M_0)^{p-1}}{\Gamma(p-1)}K_{p-1}(b_{\rm T}M_0)$	M_0, p

Proxy models: performed fits at fixed T=0.875. One INDEPENDENT fit for each zh-bin in the range 0.375<zh<0.725.

Stronger zh-dependence in *dimensionfull* parameter

Very large bT behaviour might not be resolved by data

> At smaller energies (say, COMPASS) one has sensitivity to larger values of bT.

Need to constraint very large bT region.

Which asymptotic behaviour?

P. Schweitzer, M. Strikman, and C. Weiss, JHEP 1301, 163 (2013) J. Collins and T. Rogers, Phys. Rev. D91 (2015) 074020, [1412.3820].

Hypotheses for gK

We consider
$$\log(M_{\rm D}) \underset{b_{\rm T} \to \infty}{\sim} - C b_{\rm T} + o(b_{\rm T})$$
 model

$$\tilde{D}(b_{\rm T},\zeta) = \tilde{D}(b_{\rm T},\zeta_0) \exp\left\{-\frac{g_{\rm K}}{4}\log\left(\frac{\zeta}{\zeta_0}\right)\right\} (...) \qquad \text{In general}$$

Hypotheses for gK

We consider
$$\log(M_{\rm D}) \sim_{b_{\rm T} \to \infty} - C b_{\rm T} + o(b_{\rm T})$$
 model

$$\tilde{D}(b_{\rm T},\zeta) = \tilde{D}(b_{\rm T},\zeta_0) \exp\left\{-\frac{g_{\rm K}}{4}\log\left(\frac{\zeta}{\zeta_0}\right)\right\}(...) \qquad \text{In general}$$

$$\log \left(\tilde{D}(b_{\mathrm{T}}, \zeta) \right)^{b_{\mathrm{T}} \stackrel{\rightarrow}{=} \infty} - Cb_{\mathrm{T}} - \frac{g_{\mathrm{K}}^{\mathrm{large} \, b_{\mathrm{T}}}}{4} \log \left(\frac{\zeta}{\zeta_0} \right) + o(b_{\mathrm{T}}) \qquad \text{with TMD}}{\mathsf{model}}$$
$$g_{\mathrm{K}}(b_{\mathrm{T}}) = o(b_{\mathrm{T}})$$

Hypotheses for gK

Asymptotic behaviour of TMD preserved under evolution

$$\tilde{D}(b_{\rm T},\zeta) = \tilde{D}(b_{\rm T},\zeta_0) \exp\left\{-\frac{g_{\rm K}}{4}\log\left(\frac{\zeta}{\zeta_0}\right)\right\} (...)$$
 In general

$$\log \left(\tilde{D}(b_{\mathrm{T}}, \zeta) \right)^{b_{\mathrm{T}}} \stackrel{\to}{=} ^{\infty} - Cb_{\mathrm{T}} - \frac{g_{\mathrm{K}}^{\mathrm{large}\,b_{\mathrm{T}}}}{4} \log \left(\frac{\zeta}{\zeta_{0}} \right) + o(b_{\mathrm{T}}) \qquad \text{with TMD}}{\mathsf{model}}$$
$$g_{\mathrm{K}}(b_{\mathrm{T}}) = o(b_{\mathrm{T}})$$

Models for MD

$$M_{\rm D} = \frac{2^{2-p} (b_{\rm T} M_0)^{p-1}}{\Gamma(p-1)} K_{p-1} (b_{\rm T} M_0) \times F(b_{\rm T}, z_h)$$

$$\frac{ID}{I} \frac{M_{\rm D} \text{ model}}{M_{\rm D} \text{ model}} \frac{\text{parameters}}{1 + \log(1 + (b_{\rm T} M_z)^2)} \int^q M_0, M_1$$

$$p = 1.51, q = 8$$

$$M_z = -M_1 \log(z_h)$$

$$II \quad F = 1$$

$$M_z = M_h \frac{1}{z f(z)^2} \sqrt{\frac{3}{1 - f(z)}}$$

$$p_z = 1 + \frac{3}{2} \frac{f(z)}{1 - f(z)}$$

$$f(z) = 1 - (1 - z)^{\beta}, \quad \beta = \frac{1 - z_0}{z_0}$$

We consider two models; power law as starting point

> Two different approaches to model zhdependence

Models for gK

$g_{\rm K}$ model		
A	$g_{\rm K} = \log \left(1 + (b_{\rm T} M_{\rm K})^{p_{\rm K}} \right)$	$M_{ m K}, \ p_{ m K}$
В	$g_{\rm K} = M_{\rm K} b_{\rm T}^{(1-2p_{\rm K})}$	$M_{ m K}, \ p_{ m K}$

I focus on gK since it can be compared to other extractions. Recall that the TMDFF in this case is differs from the usual definition by a soft factor.

Goodness of Fit

$q_{\rm T}/Q < 0.15 \ ({\rm pts} = 168)$		
	IA	IB
$\chi^2_{ m d.o.f.}$	1.25	1.19
$M_0({ m GeV})$	$0.300\substack{+0.075\\-0.062}$	$0.003\substack{+0.089\\-0.003}$
$M_1(\text{GeV})$	$0.522\substack{+0.037\\-0.041}$	$0.520\substack{+0.027\\-0.040}$
p^*	1.51	1.51
q^*	8	8
$M_{\rm K}({ m GeV})$	$1.305\substack{+0.139 \\ -0.146}$	$0.904\substack{+0.037\\-0.086}$
p_{K}^{*}	0.609	0.229

$q_{\rm T}/Q < 0.15 \ ({\rm pts} = 168)$		
	IIA	IIB
$\chi^2_{\rm d.o.f.}$	1.35	1.33
z_0	$0.574\substack{+0.039\\-0.041}$	$0.556\substack{+0.047\\-0.051}$
$M_{\rm K}({ m GeV})$	$1.633^{+0.103}_{-0.105}$	$0.687^{+0.114}_{-0.171}$
p_k	$0.588\substack{+0.127\\-0.141}$	$0.293\substack{+0.047\\-0.038}$

Comparison of all models similar (within error bands)

Goodness of Fit

$q_{\rm T}/Q < 0.15 ~({\rm pts} - 168)$		
	IA	IB
$\chi^2_{ m d.o.f.}$	1.25	1.19
$M_0({ m GeV})$	$0.300\substack{+0.075\\-0.062}$	$0.003^{+0.089}_{-0.003}$
$M_1(\text{GeV})$	$0.522_{-0.041}^{+0.037}$	$0.520\substack{+0.027\\-0.040}$
p^*	1.51	1.51
q^*	8	8
$M_{\rm K}({ m GeV})$	$1.305\substack{+0.139\\-0.146}$	$0.904\substack{+0.037\\-0.086}$
p_{K}^{*}	0.609	0.229

$q_{\rm T}/Q < 0.15 \ ({\rm pts} = 168)$		
	IIA	IIB
$\chi^2_{ m d.o.f.}$	1.35	1.33
z_0	$0.574_{-0.041}^{+0.039}$	$0.556\substack{+0.047\\-0.051}$
$M_{\rm K}({ m GeV})$	$1.633_{-0.105}^{+0.103}$	$0.687^{+0.114}_{-0.171}$
p_k	$0.588\substack{+0.127\\-0.141}$	$0.293\substack{+0.047\\-0.038}$

Comparison of all models similar (within error bands)

Comparison to data

Dark bands: statistical uncertainties from extraction Light bands: rough estimate of uncertainty due to collinear function uncertainties (probably an overestimation)

Extracted functions & correlations

TMDFF: contains both functions extracted: MD and gK

Extracted functions & correlations

MD and gK differences beyond statistical error bands. Can be thought as a type of theoretical error (model bias) .

Comparison to other extractions

Comparison to lattice calculations

