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Finally, we require �
2
/Q

2 = ⌧meas., and we remove the label “meas”, which has now

become redundant. At NLO, NLL accuracy, the cross section for e+e� ! H, X di↵erential

in zh, T and PT is then given by:
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where, according to Section 3:
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with x defined as in Eq. (3.23). For a convenient and straightforward application of

Eq. (4.6) we recall that the Wilson coe�cients C
[1]

q/q and C
[1]

g/q are presented in Eqs. (3.15)

and (3.16), the functions g1, g2 and g
K
2
, gK

3
contributing to the Sudakov are computed

in Eqs. (3.24), (3.25), (3.29) and (3.30), and the non-perturbative functions gK and MD

are defined in Eqs. (3.32) and (5.1). Notice that the cross section in Eq. (4.5) is not re-

summed in thrust. A proper resummation in T is beyond the purpose of this paper. Such

resummation must also include a correct treatment of the dependence on zh, by consider-

ing the terms that have been neglected in the approximation used in Eq. (4.4). Clearly,

this is strictly connected to the di�culties in finding a fully resummed expression for the

subtracted, renormalized function J
(�)
q/q (see the discussion at the end of Section 2.2.2) and,

ultimately, for the whole second line of Eq. (4.2).

Very recently, the factorization of the e
+
e
�
! HX cross section, as measured by the

BELLE Collaboration (Ref. [1]), has been investigated in two papers, both based on the

SCET formalism. In Ref. [12], the authors propose to integrate out the thrust T and to

reproduce the experimental cross section by combining all the measured thrust bins, within

the range [0.5�1.0]. A cross section di↵erential in zh, PT and T , is presented in Ref. [13]; it

results from matching three di↵erent kinematical regions, each associated with a di↵erent

factorized expression for the final cross section. The phenomenological application of this

formula is not shown.
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and k
+ is the plus component of the momentum of the fragmenting parton. The function

�D is the anomalous dimension of the TMD FF, while eK is the rapidity-independent kernel

of the CS-evolution. They, in turn, solve the following equations:
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where �K is the anomalous dimension of the soft kernel eK. The solution to Eqs. (3.4)

and (3.5) is given by [27, 28]:
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In the previous expression, the reference scales are µ = µb and ⇣ = µ
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We also introduce a minimum value bmin, that allows to recover the collinear FFs by

integrating over the transverse momentum of the fragmenting parton. Therefore we will

adopt the modified b
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Usual definition 
TMD FF

For this process 
TMD FF

Soft non-
perturbative 
Function

Theoretical framework for e+e- -> h X 



           
   Same function for non-perturbative evolution 

                             

Same 
constraints  
to collinear FF

Theoretical framework for e+e- -> h X 

and the functions g1 and g2 are given by:
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where �0 and �1 are the coe�cients of the beta functions up to 2 loop:
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This result is in agreement with the Sudakov factor computed e.g. in Ref. [32]. On the

other hand, the term depending on the rapidity cut-o↵ ⇣ is given by:
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where x has been defined in Eq. (3.23), while the functions gK
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3.3 Non-Perturbative content

The last term in Eq. (3.9) encodes the whole non-perturbative content of the TMD frag-

mentation function, D1. Clearly, this cannot be predicted by perturbative QCD and hence

it has to be extracted from experimental data, through a phenomenological analysis. It

involves two functions. The first is gK , which describes the long-distance behavior of the

soft kernel eK, defined as:

gK(bT ) = eK(b?T ; µ)� eK(bT ; µ). (3.31)

In most phenomenological applications it is assumed to behave quadratically:

gK(bT ) = a b
2

T . (3.32)

with a ⇠ 0.01÷ 0.1 GeV2.
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   What is the effect of the collinear  
FFs (and PDFs in general) ?  

                             

Theoretical framework for e+e- -> h X 

           
Large-bT behaviour of gK ? 

                             



Taken from M. Boglione DIS 2021

Global Fits 
Possible roadmap



Must consider:

(Global) Fits 

           

• Which collinear functions are more appropriate? 

• Which regions in bT are being mapped by extractions. 

• Constraints of bT-behaviour for TMDs. 

•  Physical pictures/theoretical arguments /models (not 
parametrizations) 

• Non perturbative evolution (gK) should be consistent with 
SIDIS, DY, e+e- two-hadron production. 

With  



Phenomenological analysis  
of recent BELLE data



BELLE data overview 

           
Binned in PT, zh and T (thrust) 

                             
0.06<PT<2.5   GeV

           
(Charged pions ) 

                             

0.125<zh<0.975 (18 bins)

0.6<T<0.975. (6 bins)

For our analysis 
PT/zh<0.15 Q  

0.375<zh<0.725.    (8 bins)

0.750<T<0.875.  (3 bins)

Q=10.6 GeV



zh-dependence and choice of collinear FFs
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• We compare results obtained with NNFFnlo and JAM20nlo 



zh-dependence and choice of collinear FFs
           

• We compare results obtained with NNFFnlo and JAM20nlo 
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b , where µb is defined

as:

µb =
2e��E

b
?
T (bT )

, (3.10)

where the b
?
T prescription allows to separate the perturbative small-bT behavior of the

TMD from its non-perturbative large bT content. In fact, b?T (
~bT ) is the same of ~bT at small

bT , while at large bT it is no larger than a certain bmax:

~b
?
T (bT ) =

~bTq
1 + b

2

T /b
2
max

. (3.11)

We also introduce a minimum value bmin, that allows to recover the collinear FFs by

integrating over the transverse momentum of the fragmenting parton. Therefore we will

adopt the modified b
?
T prescription defined as:

~b
?
T (bc(bT )) = ~b

?
T

✓q
b
2

T + b2min

◆
. (3.12)
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to delineate the contours of e+e� ! hX kinematic re-
gions where specific factorization regimes can be applied
was developed in Ref. [25], which we will refer to in our
analysis. Another delicate point is the choice of collinear
fragmentation functions. While one expects part of the
z-dependence of theory lines to come from the behavior
of the collinear FFs, there is no restriction regarding a
possible z-dependence in the function MD. Again, how
appropriate a given set is depends on the parametric form
of the model. In the following sections we systematically
explain our choices.

For our study we will use a simple minimization pro-
cedure of the �

2 given by

�
2 =

nX

j=1

(Tj({p})� Ej)2

�2
j

, (5)

with {Ej} the set of the n data points under consider-
ation and where the corresponding theory computations
{Tj} depend on a set {p} of m parameters. The un-
certainties �j are treated as independent uncorrelated
errors, i.e. di↵erent sources of errors provided by the
BELLE data set are added in quadrature. Future refine-
ments of our work can be achieved by modifying the def-
inition in Eq. (5) in order to account for the correlations
in the systematic uncertainties. This, however, requires
more detailed information about the di↵erent sources of
such types of errors, which is not available. For now,
we proceed by minimizing Eq. (5) as done in previous
related analyses [15, 26, 27, 33, 34].

In order to test goodness-of-fit, we use the �
2 per de-

gree of freedom, given by �
2
d.o.f. = �

2
/(n � m), which

should be close to unity for a model to be considered
appropriate. We will estimate the statistical errors of
our analysis by determining 2�-confidence regions based
on a straight forward application of the Neyman-Pearson
Lemma and Wilks’ theorem. Concretely, provided a min-
imal set of parameters {p0} with �

2
0, we consider param-

eter configurations {pi} with �
2
i
given by

�
2
i
< �

2
0 +��

2
, (6)

where ��
2 is not an arbitrary tolerance but rather de-

pends on the confidence level and the number of param-
eters varied. For c-� confidence level one has

erf

✓
cp
2

◆
=

Z ��
2

0
dx X

2
D
(x) , (7)

with X
2(D) a chi squared distribution with D degrees of

freedom equal to the number of parameters varied.1

1
This equation gives ��2

= 1 for 1� c.l. when varying only one

parameter. We consider 2� and mostly vary all parameters at

once so ��2
values will be larger than unity.
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FIG. 1. Convolution of the collinear fragmentation func-
tion and matching coe�cients d ⌦ C for the NNFF[33] and
JAM20[35] sets. Here z is fixed at z = 0.425, but significant
di↵erences can also be observed at other values of zh.

A. TMD FF z-dependence and choice of collinear
FFs

Similarly to the usual CSS formalism for two-hadron
production, the impact parameter space in Eq. (2) is
constrained at small bT by a small distance OPE, hence
the appearance of the convolution of collinear FFs with
matching coe�cients C, which we denote by d ⌦ C.
This factor provides an important constraint of the zh-
dependence for the TMDs. As discussed before, the tran-
sition from short to large distance of the TMD is regu-
lated by the b?-prescription, for which a maximum value
or “freezing point” must be set, below which one expects
perturbation theory to apply. Such maximum distance,
bmax in Eq. (3), corresponds to a minimum perturba-
tive scale of µmin = 2e��E/bmax. For our studies we
choose bmax = 1.0GeV�1, which ensures that pertur-
bative quantities are never evaluated bellow a scale of
1.12GeV. This seems like a sensible choice since pertur-
bation theory is known to work well in collinear observ-
ables down to a scale of around 1.0GeV.
With this choice, we turn to the question of choosing a

set of collinear FFs. We will compare the NNFF[33] and
the JAM20[35] next-to-leading order (NLO) sets 2. These
are modern analyses that represent the state of the art in
collinear FF extractions and are readily available through
LHAPDF [36]. As it can be seen in Fig. 1, computation
of d⌦C may render significantly di↵erent results for each
collinear FF set. One may suspect that the extraction of
the TMD is sensitive to the choice of collinear functions.
It is however not obvious that either of the collinear set
is to be preferred over the other. It is entirely possible
that by adjusting values of the model parameters for say,

2
Note that we use a recent update of the JAM20 pion FFs, ob-

tained from https://github.com/QCDHUB/JAM20SIDIS.
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• We compare results obtained with NNFFnlo and JAM20nlo 

2

at fixed values of T = 0.875 and look for the one
that better describes the data, in terms of the minimal
�
2
dof. We consider for now only the kinematical ranges

0.275 < zh < 0.675 and qT/Q < 0.2. This includes
enough data points to constrain the tests. At this stage
we only attempt to parametrizeMD and set the exponen-
tial factor containing gK equal to unity. This amounts to
setting ⇣ ! ⇣0 in Eq. (??). As we will discuss in more
detail in section Sec. II B, we will look for extractions
for which the ”dominant” behaviour is that of MD. Fur-
thermore, due to the correlation between T and bT in-
troduced by the logarithm in the term containing gK, we
expect the latter function to be constrained only when
considering the T -dependence.

TABLE I. Models in impact parameter space used for pre-

liminary tests in this section. First two entries correspond to

zh-independent models for MD. The model label as ”Bessel-

K” corresponds to a power law in momentum space. Entries

three and four are zh-dependent models for MD, obtained by

modifying the mass parameter of the Bessel-K model, as indi-

cated. The last entry introduces zh-dependence to the Bessel-

K model by a multiplicative factor with gaussian behaviour

in bT.

Nomenclature MD-model parameters

zh-independent models

1)Exponential-q e
�(M0bT)q M0, q

2)Bessel-K
22�p(bTM0)p�1

�(p� 1)
Kp�1(bTM0) M0, p

zh-dependent models

3)Bessel-K-Mz
1 M0 ! M1 (1� ⌘1 log(zh)) M1, ⌘1, p

4)Bessel-K-Mz
2 M0 ! M2

✓
1 +

⌘2

z2h

◆
M2, ⌘2, p

5)Bessel-K-Mz
g e

(MgbT)2 log(zh)⇥ Bessel-K Mg, M0, p

In a first attempt to test the collinear functions,
one may consider models for MD with no explicit zh-
dependence, and perform fits for fixed values of zh. The
choice of models is summarized in the top two entries of
Table I. As it can be seen in Fig. 2, these models results in
rather high values of �2

dof, giving a bad description of the
data. Nonetheless, it is noteworthy that the �2

dof tends to
be larger for the JAM20 set. Both models seem to work
at qT/Q < 0.1 but deteriorate fast for 0.1 < qT < 0.2.
We will systematically study the qT-dependence in the
following sub-sections. For now we continue to address
the zh-dependence.

FIG. 2. Minimal �2
dof for fits at fixed T = 0.875 and individual

zh-bins in the range 0.272 < zh < 0.675, for MD models

with no zh-dependence. Dashed and solid lines correspond

respectively to the first and second entries in Table I. For each

model we have two parameters and a total of nine individual

fits, one per zh-bin. Albeit the generally poor description

of the data, the consistently smaller values for �2
dof obtained

with the NNFF set are noteworthy.

Recall that so far, we have performed only indepen-
dent fits at fixed T = 0.875 and separately for each bin
inside the range 0.272 < zh < 0.675. A useful exercise
is to plot the values of the resulting minimal parame-
ters in terms of zh, as is done in Fig. 3, for the Bessel-K
model. There, it is clear that if one expects to fit all
bins in zh simultaneously (still at fixed T = 0.875), some
zh-dependence shall be needed in the parametric form
for MD. We remark that an important result of the fac-
torization scheme is that gK must be independent of zh.
Another interesting aspect of Fig. 3 is that a stronger
zh-dependence is observed for the mass parameter M

than for the dimensionless parameter p. More gener-
ally, we find that improving the trend of theory lines
in the variable zh is more readily done by introducing
a zh-dependence in dimension-full parameters. We have
observed this for several cases we tested, although here
we only show a few of them.

We attempt three di↵erent zh-dependent models for
MD, as indicated in the last three entries of Table I. The
first two are modifications of the Bessel-K model, where
we modify the mass parameter as M ! M(z), adding
in each case one more parameter to introduce, respec-
tively, a linear and a logarithmic term. The last one, is

the Bessel-K model multiplied by z
(M2bT)2

h , so that the
zh-dependence is determined by the mass parameter M2.
Results for these three models can be seen on the left
panel of Fig. 4. Despite the large values of �2

dof for the
first two models, one may see an improvement respect to
the zh-independent Bessel-K model. The third model
works indeed much better, which is partly due to its
zh-dependence but also to the gaussian behaviour intro-

duced with the factor z(M2bT)2

h . The gaussian behaviour
of this model improves the description at the large end

JAM20 & NNFF perform  
equally.

5

TABLE I. Models in impact parameter space used for pre-
liminary tests in this section. First two entries correspond to
zh-independent models for MD. Models labeled as ”BK” are
proportional to a modified Bessel function of the second kind
and correspond to a power law in momentum space. Entries
three and four are zh-dependent models for MD, obtained by
modifying the mass parameter of the BK model, as indicated.
The last entry introduces zh-dependence to the BK model by
a multiplicative factor with Gaussian behavior in bT.

ID MD-model parameters

zh-independent models

1)Exp-p e
�(M0bT)p M0, p

2)BK
22�p(bTM0)p�1

�(p� 1)
Kp�1(bTM0) M0, p

zh-dependent models

3)BK-1 M0 ! M1 (1� ⌘1 log(zh)) M1, ⌘1, p

4)BK-2 M0 ! M2

✓
1 +

⌘2

z2
h

◆
M2, ⌘2, p

5)BK-g e
(MgbT)2 log(zh)⇥ BK Mg, M0, p

MD, a similar description of the data could be achieved
with the two collinear FF sets. By any consideration, the
question of which set is more appropriate depends on the
choices of the model.

In order to choose a set, we perform preliminary fits
at fixed values of T = 0.875 and look for the one
that better describes the data, in terms of the minimal
�
2
dof. We consider for now only the kinematical ranges

0.375 < zh < 0.725 and qT/Q < 0.20. This includes
enough data points to constrain the tests. At this stage
we only attempt to parametrize MD and set the expo-
nential factor containing gK, in last line of Eq. (2), equal
to unity.

Notice that according to Ref. [25] data corresponding
to zh bins with z  0.375 would be dominated by Region
1, which requires a di↵erent factorization theorem. For
this reason we do not consider them here.

In a first attempt to test the collinear functions,
one may consider models for MD with no explicit zh-
dependence, and perform fits for fixed values of zh. The
choice of models is summarized in the top two entries of
Table I: model 1 inspired by a Gaussian-like bT behavior
while model 2, proportional to a modified Bessel func-
tion of the second kind, corresponds to a power law in
momentum space and is the same functional form con-
sidered for MD in [29]. As it can be seen in Fig. 2,
these models result in rather high values of �2

dof, giving
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FIG. 2. Minimal �2
dof for fits at fixed T = 0.875 and individual

zh-bins in the range 0.375 < zh < 0.725, for MD models
with no zh-dependence. Here qT /Q < 0.20. Dashed and solid
lines correspond respectively to the first and second entries
in Table I. For each model we have two parameters and a
total of nine individual fits, one per zh-bin. Note that even
with such large values of �2

dof, the mild relative di↵erences
between the using JAM20 and NNFF suggest that either set
could describe the data to the same quality.

a bad description of the data. Nonetheless, it is note-
worthy that the �

2
dof tends to be larger for the JAM20

set. Both models seem to work at qT/Q < 0.1 but de-
teriorate fast for 0.1 < qT/Q < 0.2. In the following
sub-sections we will set our final qT-cut to the intermedi-
ate value qT/Q < 0.15. For now we will leave this aside
and continue to address the zh-dependence. Recall that
so far we have performed only independent fits at fixed
T = 0.875 and separately for each bin inside the range
0.375 < zh < 0.725. A useful exercise is to plot the
values of the resulting minimal parameters in terms of zh,
as is done in Fig. 3, for the BK model. There, it is clear
that if one expects to fit all bins in zh simultaneously
(still at fixed T = 0.875), some zh-dependence shall be
needed in the parametric form for MD. We remark that
an important result of the factorization scheme is that gK
must be independent of zh. Another interesting aspect
of Fig. 3 is that a stronger zh-dependence is observed for
the mass parameter M than for the dimensionless pa-
rameter p. We find that improving the trend of theory
lines in the variable zh is more readily done by intro-
ducing a zh-dependence in dimensionful parameters. We
have observed this for several cases we tested, although
here we only show a few of them. More generally, one
could expect strong correlation between all parameters
in MD(bT). For instance, a closer inspection of the ex-
ample in Fig. 3 shows that the two parameters shaping
the bT profile of MD, M0 and p, display a similar trend
as a function of zh. We will come back on this later on
in the next sections.

We attempt three di↵erent zh-dependent models for
MD, as indicated in the last three entries of Table I.
The first two are modifications of the BK model, where
we modify the mass parameter as M ! M(z), adding

           
   Proxy models: performed fits 

at fixed T=0.875. 
One INDEPENDENT fit for each  

zh-bin in the range 
0.375<zh<0.725. 
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at fixed values of T = 0.875 and look for the one
that better describes the data, in terms of the minimal
�
2
dof. We consider for now only the kinematical ranges

0.275 < zh < 0.675 and qT/Q < 0.2. This includes
enough data points to constrain the tests. At this stage
we only attempt to parametrizeMD and set the exponen-
tial factor containing gK equal to unity. This amounts to
setting ⇣ ! ⇣0 in Eq. (??). As we will discuss in more
detail in section Sec. II B, we will look for extractions
for which the ”dominant” behaviour is that of MD. Fur-
thermore, due to the correlation between T and bT in-
troduced by the logarithm in the term containing gK, we
expect the latter function to be constrained only when
considering the T -dependence.

TABLE I. Models in impact parameter space used for pre-

liminary tests in this section. First two entries correspond to

zh-independent models for MD. The model label as ”Bessel-

K” corresponds to a power law in momentum space. Entries

three and four are zh-dependent models for MD, obtained by

modifying the mass parameter of the Bessel-K model, as indi-

cated. The last entry introduces zh-dependence to the Bessel-

K model by a multiplicative factor with gaussian behaviour

in bT.

Nomenclature MD-model parameters

zh-independent models

1)Exponential-q e
�(M0bT)q M0, q

2)Bessel-K
22�p(bTM0)p�1

�(p� 1)
Kp�1(bTM0) M0, p

zh-dependent models

3)Bessel-K-Mz
1 M0 ! M1 (1� ⌘1 log(zh)) M1, ⌘1, p

4)Bessel-K-Mz
2 M0 ! M2

✓
1 +

⌘2

z2h

◆
M2, ⌘2, p

5)Bessel-K-Mz
g e

(MgbT)2 log(zh)⇥ Bessel-K Mg, M0, p

In a first attempt to test the collinear functions,
one may consider models for MD with no explicit zh-
dependence, and perform fits for fixed values of zh. The
choice of models is summarized in the top two entries of
Table I. As it can be seen in Fig. 2, these models results in
rather high values of �2

dof, giving a bad description of the
data. Nonetheless, it is noteworthy that the �2

dof tends to
be larger for the JAM20 set. Both models seem to work
at qT/Q < 0.1 but deteriorate fast for 0.1 < qT < 0.2.
We will systematically study the qT-dependence in the
following sub-sections. For now we continue to address
the zh-dependence.

FIG. 2. Minimal �2
dof for fits at fixed T = 0.875 and individual

zh-bins in the range 0.272 < zh < 0.675, for MD models

with no zh-dependence. Dashed and solid lines correspond

respectively to the first and second entries in Table I. For each

model we have two parameters and a total of nine individual

fits, one per zh-bin. Albeit the generally poor description

of the data, the consistently smaller values for �2
dof obtained

with the NNFF set are noteworthy.

Recall that so far, we have performed only indepen-
dent fits at fixed T = 0.875 and separately for each bin
inside the range 0.272 < zh < 0.675. A useful exercise
is to plot the values of the resulting minimal parame-
ters in terms of zh, as is done in Fig. 3, for the Bessel-K
model. There, it is clear that if one expects to fit all
bins in zh simultaneously (still at fixed T = 0.875), some
zh-dependence shall be needed in the parametric form
for MD. We remark that an important result of the fac-
torization scheme is that gK must be independent of zh.
Another interesting aspect of Fig. 3 is that a stronger
zh-dependence is observed for the mass parameter M

than for the dimensionless parameter p. More gener-
ally, we find that improving the trend of theory lines
in the variable zh is more readily done by introducing
a zh-dependence in dimension-full parameters. We have
observed this for several cases we tested, although here
we only show a few of them.

We attempt three di↵erent zh-dependent models for
MD, as indicated in the last three entries of Table I. The
first two are modifications of the Bessel-K model, where
we modify the mass parameter as M ! M(z), adding
in each case one more parameter to introduce, respec-
tively, a linear and a logarithmic term. The last one, is

the Bessel-K model multiplied by z
(M2bT)2

h , so that the
zh-dependence is determined by the mass parameter M2.
Results for these three models can be seen on the left
panel of Fig. 4. Despite the large values of �2

dof for the
first two models, one may see an improvement respect to
the zh-independent Bessel-K model. The third model
works indeed much better, which is partly due to its
zh-dependence but also to the gaussian behaviour intro-

duced with the factor z(M2bT)2

h . The gaussian behaviour
of this model improves the description at the large end
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FIG. 3. Minimal parameter values for fits at fixed T = 0.875
and individual zh-bins in the range 0.375 < zh < 0.725, for
the MD model in the second entry of Table I (zh-independent
BK model). Here qT /Q = 0.15. Results correspond to the
solid lines in Fig. 2. In this case, where we fit zh-bins sepa-
rately, the incompatibility of M and p for di↵erent zh suggests
that a zh-dependence is needed if the model is to describe the
data on a simultaneous fit of the 0.375 < zh < 0.725 range.
It is interesting to note that the dimensionful parameter M
exhibits a stronger correlation to zh.

in each case one more parameter to introduce, respec-
tively, a linear and a logarithmic term. The last one,

is the BK model multiplied by z
(MgbT)2

h
, so that the zh-

dependence is controlled by this additional multiplicative
function and determined by the mass parameter Mg.
Results for these three models can be seen on the left
panel of Fig. 4. Despite the large values of �

2
dof for

the first two models, we find a considerable improvement
with respect to the zh-independent BK model. The third
model works indeed much better, which is partly due to
its zh-dependence but also to the Gaussian behavior in-

troduced by the factor z
(MgbT)2

h
. The Gaussian behavior

of this model improves the description at the large end of
the selected range of qT, giving much lower values of �2

dof.
For this last model, last entry in Table I, we perform two
more fixed-T fits for T = 0.750 and T = 0.825, result-
ing in �

2’s roughly three times smaller than those cor-
responding to models BK1 and BK2. Results are shown
on the right panel of Fig. 4.

One should be careful to interpret these results. First,
while it may seem that the last model should be the ob-
vious choice to extract the unpolarized , the other two
zh-dependent models we have considered here are able
to describe the data well up to qT/Q < 0.1, as we will
show in the following sub-sections. This is a delicate
point, since one does not know a priori for which max-
imum value of qT/Q one can still trust that the errors
O
�
(qT/Q)2

�
of Eq. (2) are small enough so that the for-

malism is still valid. For instance, if the cut on qT/Q was
made more restrictive, say qT/Q < 0.1, the clear advan-
tage of the Gaussian zh-dependent model, describing the
data in the region 0.1 < qT/Q < 0.2, would become less
significant.

FIG. 4. Minimal �2
dof for fits in the kinematic range

0.375 < zh < 0.725 (zh-bins are fitted simultaneously),
for the zh-dependent models for MD in the last three entries
of Table I. Left panel: comparison of the results obtained
with NNFF[33] and JAM20[35], for fixed T = 0.875. Right
panel: fixed-T fits for T = {0.750, 0.825, 0.875}, using the BK
model with a gaussian zh-dependent term (last entry in Ta-
ble I). Similarly to the results presented in Fig. 2, the NNFF
consistently produce smaller values of �2

dof.

We close our preliminary discussion of the zh-
dependence by stating the main conclusions of this sub-
section. First, a stronger zh-dependence is observed in
mass parameters than in dimensionless parameters. This
is an observation that applies to several models we tested,
of which we provide one concrete example in Fig. 3. In
the specific case of Fig. 3, we also find that zh may
strongly correlate the model parameters M0 and p. Sec-
ond, in all the preceding discussions, and despite of in-
adequacies in some of the models considered, �2

dof values
tend to be smaller with NNFF, so this will be our choice
for our main analysis, but we will not yet set on a specific
model for MD. Based on our preliminary studies of this
section, we expect that using JAM20 would give larger
values of �2

dof, although not by much.

B. Behavior of the unpolarized TMD FF in the
large-bT limit.

In this subsection we will address the behavior of the
unpolarized TMD FF in impact parameter space. Specif-
ically, we look at possible parametric forms for MD in
Eq. (2), paying special attention to the large-bT limit.
For the purposes of our discussion we identify two di↵er-
ent possible meanings for ”large-bT” behavior:

1. asymptotically large-bT

2. maximum bT accessible through data.

The first one corresponds to the formal limit bT ! 1, in
which one may write asymptotic expansions for a known
parametric form. For instance, the BK model discussed
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TABLE II. Models for MD in impact parameter space. Both
cases shown are obtained by multiplying model BK of Table I,
which corresponds to a power law in momentum space, by an
additional function of bT and zh.

MD =
22�p(bTM0)p�1

�(p� 1)
Kp�1(bTM0) ⇥ F (bT, zh)

Mz = �M1 log(zh)

ID F -model parameters

I F =

 
1 + log

�
1 + (bTMz)2

�

1 + ((bTMz)2)

!q

M0,M1, p, q = 8

IG F = exp
�
(MgbT)2 log(zh)

�
M0, Mg, p

in the previous subsection has an asymptotic limit

22�p(bTM0)p�1

�(p� 1)
Kp�1(bTM0)

!
p
⇡
2

3
2�p(bTM)p�

3
2

�(p� 1)
e
�bTM0 . (8)

characterized by an exponentially decaying behavior as
bT ! 1. The second one, instead, refers to the largest
region in bT that is accessible phenomenologically, i.e.,
the largest distances at which the data can constrain the
model, which can be better determined after carrying out
a data analysis. The largest bT accessible phenomenolog-
ically corresponds to the case of measurements at values
of Q small enough that nonperturbative e↵ects are max-
imized, but large enough that TMD factorization still
holds. Even at scales of, say, Q = 2GeV, it is possi-
ble that the asymptotic behaviour of the TMDs cannot
be resolved completely. At BELLE kinematics, where
Q ⇡ 10GeV, it is unlikely that one can find strong con-
straints for the asymptotic behaviour of TMDs.

This would mean that fitting BELLE data may be pos-
sible with parametric forms of distinct asymptotic be-
haviour. However, when considering data at smaller en-
ergy scales, for which the maximum bT accessible is likely
larger than that at BELLE energies, one may find incon-
sistencies in a global fit if the asymptotic behaviour of
bT is not chosen appropriately Theoretical constraints
are important in light of all these issues encountered at
lower energy phenomenology, see for example Refs. [37–
43]. To do so, we follow some of the considerations made
in Ref. [44]. Thus, for this work we will look for a para-
metric MD that in bT space decays exponentially, but
that is able to describe BELLE data at least as well
as model 5 in Table I, which in the preliminary cases

TABLE III. Minimal �2
d.o.f. resulting by fitting the two para-

metric forms forMD in Table II. In each case we perform three
independent fits, one for each value T = {0.750, 0.825, 0.875},
in the ranges qT/Q < 0.2 and 0.375 < zh < 0.725. As far as
the description of the data is concerned all three cases seem
to be acceptable, see explanation in the text.
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2
d.o.f. (fixed-T fits)

MD model T = 0.750 0.825 0.875

I 1.2 0.38 1.02

IG 1.46 0.47 1.51
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considered so far, seems to be suitable. A possible can-
didate is shown in Table II, where for convenience we
have explicitly rewritten model 5 of Table I. Both mod-
els in Table II correspond to a power-like behaviour in
momentum space, characterized in bT space by the mod-
ified Bessel function of the second kind, times an extra
factor which we denote as F . To make the comparison
between exponential and Gaussian asymptotic behaviour
more transparent, in this preliminary study we consider
only the models in Table II. Note that even in the case
F = 1 one may recover an exponentially decaying be-
haviour asymptotically, from the Bessel function alone,
as seen in Eq. (8). We will consider this case later as
it requires a detailed explanation of possible final para-
metric forms, which account for the strong correlations
of parameters in MD related to the zh dependence, as
noted in the previous subsection.
For now, we will compare how well the models in Ta-

ble II may describe the data. Our aim is to provide a
practical example where two models that describe the
data reasonably well, are not necessarily constrained in
the asymptotically large bT limit. Decoupling the ques-
tion of what is an appropriate parametric form for the
PT behaviour of MD is not independent of the choices
to model its zh dependence. Thus we proceed as fol-
lows. First, we perform three fits at fixed values of
T = {0.750, 0.825, 0.875}, where in each case, we
include BELLE data in the region qT/Q < 0.20 and
0.375 < zh < 0.725. To accommodate the zh depen-
dence we choose a logarithmic behaviour in the function
F as shown in Table II. Since we are not fitting the three
T bins simultaneously, we will not be able to also fit gK,
which correlates to thrust, so for now we set gK = 0.
Then, we will look at a single case, one value of T and
zh, where the PT dependence is described well by both
models and look at the results in PT and bT space.

The results of the fixed-T fits are shown in Table III.
The smaller values of �2

d.o.f. obtained with model I are
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TABLE II. Models for MD in impact parameter space. Both
cases shown are obtained by multiplying model BK of Table I,
which corresponds to a power law in momentum space, by an
additional function of bT and zh.
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characterized by an exponentially decaying behavior as
bT ! 1. The second one, instead, refers to the largest
region in bT that is accessible phenomenologically, i.e.,
the largest distances at which the data can constrain the
model, which can be better determined after carrying out
a data analysis. The largest bT accessible phenomenolog-
ically corresponds to the case of measurements at values
of Q small enough that nonperturbative e↵ects are max-
imized, but large enough that TMD factorization still
holds. Even at scales of, say, Q = 2GeV, it is possi-
ble that the asymptotic behaviour of the TMDs cannot
be resolved completely. At BELLE kinematics, where
Q ⇡ 10GeV, it is unlikely that one can find strong con-
straints for the asymptotic behaviour of TMDs.

This would mean that fitting BELLE data may be pos-
sible with parametric forms of distinct asymptotic be-
haviour. However, when considering data at smaller en-
ergy scales, for which the maximum bT accessible is likely
larger than that at BELLE energies, one may find incon-
sistencies in a global fit if the asymptotic behaviour of
bT is not chosen appropriately Theoretical constraints
are important in light of all these issues encountered at
lower energy phenomenology, see for example Refs. [37–
43]. To do so, we follow some of the considerations made
in Ref. [44]. Thus, for this work we will look for a para-
metric MD that in bT space decays exponentially, but
that is able to describe BELLE data at least as well
as model 5 in Table I, which in the preliminary cases

TABLE III. Minimal �2
d.o.f. resulting by fitting the two para-

metric forms forMD in Table II. In each case we perform three
independent fits, one for each value T = {0.750, 0.825, 0.875},
in the ranges qT/Q < 0.2 and 0.375 < zh < 0.725. As far as
the description of the data is concerned all three cases seem
to be acceptable, see explanation in the text.
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considered so far, seems to be suitable. A possible can-
didate is shown in Table II, where for convenience we
have explicitly rewritten model 5 of Table I. Both mod-
els in Table II correspond to a power-like behaviour in
momentum space, characterized in bT space by the mod-
ified Bessel function of the second kind, times an extra
factor which we denote as F . To make the comparison
between exponential and Gaussian asymptotic behaviour
more transparent, in this preliminary study we consider
only the models in Table II. Note that even in the case
F = 1 one may recover an exponentially decaying be-
haviour asymptotically, from the Bessel function alone,
as seen in Eq. (8). We will consider this case later as
it requires a detailed explanation of possible final para-
metric forms, which account for the strong correlations
of parameters in MD related to the zh dependence, as
noted in the previous subsection.
For now, we will compare how well the models in Ta-

ble II may describe the data. Our aim is to provide a
practical example where two models that describe the
data reasonably well, are not necessarily constrained in
the asymptotically large bT limit. Decoupling the ques-
tion of what is an appropriate parametric form for the
PT behaviour of MD is not independent of the choices
to model its zh dependence. Thus we proceed as fol-
lows. First, we perform three fits at fixed values of
T = {0.750, 0.825, 0.875}, where in each case, we
include BELLE data in the region qT/Q < 0.20 and
0.375 < zh < 0.725. To accommodate the zh depen-
dence we choose a logarithmic behaviour in the function
F as shown in Table II. Since we are not fitting the three
T bins simultaneously, we will not be able to also fit gK,
which correlates to thrust, so for now we set gK = 0.
Then, we will look at a single case, one value of T and
zh, where the PT dependence is described well by both
models and look at the results in PT and bT space.

The results of the fixed-T fits are shown in Table III.
The smaller values of �2

d.o.f. obtained with model I are
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TABLE II. Models for MD in impact parameter space. Both
cases shown are obtained by multiplying model BK of Table I,
which corresponds to a power law in momentum space, by an
additional function of bT and zh.
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characterized by an exponentially decaying behavior as
bT ! 1. The second one, instead, refers to the largest
region in bT that is accessible phenomenologically, i.e.,
the largest distances at which the data can constrain the
model, which can be better determined after carrying out
a data analysis. The largest bT accessible phenomenolog-
ically corresponds to the case of measurements at values
of Q small enough that nonperturbative e↵ects are max-
imized, but large enough that TMD factorization still
holds. Even at scales of, say, Q = 2GeV, it is possi-
ble that the asymptotic behaviour of the TMDs cannot
be resolved completely. At BELLE kinematics, where
Q ⇡ 10GeV, it is unlikely that one can find strong con-
straints for the asymptotic behaviour of TMDs.

This would mean that fitting BELLE data may be pos-
sible with parametric forms of distinct asymptotic be-
haviour. However, when considering data at smaller en-
ergy scales, for which the maximum bT accessible is likely
larger than that at BELLE energies, one may find incon-
sistencies in a global fit if the asymptotic behaviour of
bT is not chosen appropriately Theoretical constraints
are important in light of all these issues encountered at
lower energy phenomenology, see for example Refs. [37–
43]. To do so, we follow some of the considerations made
in Ref. [44]. Thus, for this work we will look for a para-
metric MD that in bT space decays exponentially, but
that is able to describe BELLE data at least as well
as model 5 in Table I, which in the preliminary cases

TABLE III. Minimal �2
d.o.f. resulting by fitting the two para-

metric forms forMD in Table II. In each case we perform three
independent fits, one for each value T = {0.750, 0.825, 0.875},
in the ranges qT/Q < 0.2 and 0.375 < zh < 0.725. As far as
the description of the data is concerned all three cases seem
to be acceptable, see explanation in the text.
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considered so far, seems to be suitable. A possible can-
didate is shown in Table II, where for convenience we
have explicitly rewritten model 5 of Table I. Both mod-
els in Table II correspond to a power-like behaviour in
momentum space, characterized in bT space by the mod-
ified Bessel function of the second kind, times an extra
factor which we denote as F . To make the comparison
between exponential and Gaussian asymptotic behaviour
more transparent, in this preliminary study we consider
only the models in Table II. Note that even in the case
F = 1 one may recover an exponentially decaying be-
haviour asymptotically, from the Bessel function alone,
as seen in Eq. (8). We will consider this case later as
it requires a detailed explanation of possible final para-
metric forms, which account for the strong correlations
of parameters in MD related to the zh dependence, as
noted in the previous subsection.
For now, we will compare how well the models in Ta-

ble II may describe the data. Our aim is to provide a
practical example where two models that describe the
data reasonably well, are not necessarily constrained in
the asymptotically large bT limit. Decoupling the ques-
tion of what is an appropriate parametric form for the
PT behaviour of MD is not independent of the choices
to model its zh dependence. Thus we proceed as fol-
lows. First, we perform three fits at fixed values of
T = {0.750, 0.825, 0.875}, where in each case, we
include BELLE data in the region qT/Q < 0.20 and
0.375 < zh < 0.725. To accommodate the zh depen-
dence we choose a logarithmic behaviour in the function
F as shown in Table II. Since we are not fitting the three
T bins simultaneously, we will not be able to also fit gK,
which correlates to thrust, so for now we set gK = 0.
Then, we will look at a single case, one value of T and
zh, where the PT dependence is described well by both
models and look at the results in PT and bT space.

The results of the fixed-T fits are shown in Table III.
The smaller values of �2

d.o.f. obtained with model I are
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FIG. 5. Best-fit lines for both models in Table II, obtained
by fitting BELLE data for the kinematics T = 0.825, 0.375 <
zh < 0.725 and PT/zhQ < 0.2. Note that both lines follow
essentially the same profile in the region of the data shown.

related to the choice q = 8, which allows for a good de-
scription of the zh bins considered. Note that modifying
the zh behaviour in model IG could improve its best fit
�
2
d.o.f. as well. At this stage we consider both models as

candidates to parametrize MD, since our main interest is
to discuss about the PT dependence.

Now we look at the case zh = 0.525 and T = 0.825, for
which both models describe the data reasonably well. In
fact, as seen in Fig. 5, the models of Table II have the
same profile and almost lie on top of each other. Corre-
sponding lines in bT space are shown in Fig. 6, where it
can be seen that for values bT > 4 GeV�1 the cross sec-
tion calculated using models I and IG deviate. This is of
course due to the di↵erences in the asymptotic behaviour
of the models. This example simply illustrates that the
asymptotic behaviour of the TMD ↵ is not necessarily
constrained by BELLE data after some large value of bT.
However, the reason to prefer an asymptotic behaviour
like that of model I comes from the necessity to fit data
at lower energies in the future, for which the large-bT
Gaussian fall o↵ may not be appropriate.

From here on out we will focus on models for MD that
decay exponentially in the asymptotically large bT limit.
More precisely

log(MD) ⇠
bT!1

�C bT + o (bT) , (9)

with C a positive mass parameter and where we have
used the little-o symbol to indicate sub-linear terms in bT.
Furthermore, we will explore two di↵erent approaches,
leading to two classes of models. The first one is model
I in table Table II, which corresponds to the function of
Eq. (8) times the zh-dependent function F . The second
one, is similar to model I but sets F = 1 and models the
zh dependence through both the mass parameter M0 and
the power p of the Bessel function function of Eq. (8).

Before performing our extraction, however, we need to
set a parametric form for gK.

FIG. 6. Best-fit lines for both models in Table II in bT space,
obtained by fitting BELLE data for the kinematics T = 0.825,
0.375 < zh < 0.725 and qT/zhQ < 0.2. Lines correspond to
those in Fig. 5. The deviation of the two theory lines after
bT > 4GeV�1 indicates the lack of sensitivity to the asymp-
totic behaviour of the models in this particular example.

C. Behavior of gK in the large-bT limit.

The usual definition of the TMD FF in the CSS for-
malism di↵ers from that introduced in Ref. [28] by a non-
perturbative function MS(bT), as explained in Section I
and given in Eq. (4a). MS(bT) is associated to soft gluon
e↵ects and originates from the fact that in the latter defi-
nition the TMDs are purely collinear objects, while in the
CSS definition soft radiation contributions are included
in the TMD definition itself. This means that the non-
perturvative function MD(bT) introduced in Eq. (1), and
discussed in Section I, cannot be used directly in e

+
e
�-

two hadron production or SIDIS processes, see Eq. (4a).
Note, however, that the non-perturbative function gK has
been defined to be the same as in the usual CSS formal-
ism, up to a trivial factor of 2, see Eq. (4b). Thus, it char-
acterizes the large distance behavior of the Collins-Soper
kernel as defined in [6]. This is perhaps one of the most
useful aspect of the formalism in Refs. [25, 28, 29, 45] in
the context of global fits, since it allows for comparisons
of the extracted gK with other recent work (see for ex-
ample Refs. [3, 4, 46, 47]). In order to choose a suitable
parametrization for gK, we use the following observation
as a guiding principle.
In general, one may write the TMD FF in bT space as

D̃(bT, ⇣) =D̃(bT, ⇣0) exp

⇢
�gK

4
log

✓
⇣
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◆��
...
�
, (10)

where only the dependence on bT and ⇣ has been written
explicitly, and the ellipsis indicate other terms containing
perturbatively calculable quantities. Using the hypothe-
sis in Eq. (9) one has that in the large-bT limit
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FIG. 5. Best-fit lines for both models in Table II, obtained
by fitting BELLE data for the kinematics T = 0.825, 0.375 <
zh < 0.725 and PT/zhQ < 0.2. Note that both lines follow
essentially the same profile in the region of the data shown.

related to the choice q = 8, which allows for a good de-
scription of the zh bins considered. Note that modifying
the zh behaviour in model IG could improve its best fit
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2
d.o.f. as well. At this stage we consider both models as

candidates to parametrize MD, since our main interest is
to discuss about the PT dependence.

Now we look at the case zh = 0.525 and T = 0.825, for
which both models describe the data reasonably well. In
fact, as seen in Fig. 5, the models of Table II have the
same profile and almost lie on top of each other. Corre-
sponding lines in bT space are shown in Fig. 6, where it
can be seen that for values bT > 4 GeV�1 the cross sec-
tion calculated using models I and IG deviate. This is of
course due to the di↵erences in the asymptotic behaviour
of the models. This example simply illustrates that the
asymptotic behaviour of the TMD ↵ is not necessarily
constrained by BELLE data after some large value of bT.
However, the reason to prefer an asymptotic behaviour
like that of model I comes from the necessity to fit data
at lower energies in the future, for which the large-bT
Gaussian fall o↵ may not be appropriate.

From here on out we will focus on models for MD that
decay exponentially in the asymptotically large bT limit.
More precisely

log(MD) ⇠
bT!1

�C bT + o (bT) , (9)

with C a positive mass parameter and where we have
used the little-o symbol to indicate sub-linear terms in bT.
Furthermore, we will explore two di↵erent approaches,
leading to two classes of models. The first one is model
I in table Table II, which corresponds to the function of
Eq. (8) times the zh-dependent function F . The second
one, is similar to model I but sets F = 1 and models the
zh dependence through both the mass parameter M0 and
the power p of the Bessel function function of Eq. (8).

Before performing our extraction, however, we need to
set a parametric form for gK.
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FIG. 6. Best-fit lines for both models in Table II in bT space,
obtained by fitting BELLE data for the kinematics T = 0.825,
0.375 < zh < 0.725 and qT/zhQ < 0.2. Lines correspond to
those in Fig. 5. The deviation of the two theory lines after
bT > 4GeV�1 indicates the lack of sensitivity to the asymp-
totic behaviour of the models in this particular example.

C. Behavior of gK in the large-bT limit.

The usual definition of the TMD FF in the CSS for-
malism di↵ers from that introduced in Ref. [28] by a non-
perturbative function MS(bT), as explained in Section I
and given in Eq. (4a). MS(bT) is associated to soft gluon
e↵ects and originates from the fact that in the latter defi-
nition the TMDs are purely collinear objects, while in the
CSS definition soft radiation contributions are included
in the TMD definition itself. This means that the non-
perturvative function MD(bT) introduced in Eq. (1), and
discussed in Section I, cannot be used directly in e
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two hadron production or SIDIS processes, see Eq. (4a).
Note, however, that the non-perturbative function gK has
been defined to be the same as in the usual CSS formal-
ism, up to a trivial factor of 2, see Eq. (4b). Thus, it char-
acterizes the large distance behavior of the Collins-Soper
kernel as defined in [6]. This is perhaps one of the most
useful aspect of the formalism in Refs. [25, 28, 29, 45] in
the context of global fits, since it allows for comparisons
of the extracted gK with other recent work (see for ex-
ample Refs. [3, 4, 46, 47]). In order to choose a suitable
parametrization for gK, we use the following observation
as a guiding principle.
In general, one may write the TMD FF in bT space as
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TABLE II. Models for MD in impact parameter space. Both
cases shown are obtained by multiplying model BK of Table I,
which corresponds to a power law in momentum space, by an
additional function of bT and zh.

MD =
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characterized by an exponentially decaying behavior as
bT ! 1. The second one, instead, refers to the largest
region in bT that is accessible phenomenologically, i.e.,
the largest distances at which the data can constrain the
model, which can be better determined after carrying out
a data analysis. The largest bT accessible phenomenolog-
ically corresponds to the case of measurements at values
of Q small enough that nonperturbative e↵ects are max-
imized, but large enough that TMD factorization still
holds. Even at scales of, say, Q = 2GeV, it is possi-
ble that the asymptotic behaviour of the TMDs cannot
be resolved completely. At BELLE kinematics, where
Q ⇡ 10GeV, it is unlikely that one can find strong con-
straints for the asymptotic behaviour of TMDs.

This would mean that fitting BELLE data may be pos-
sible with parametric forms of distinct asymptotic be-
haviour. However, when considering data at smaller en-
ergy scales, for which the maximum bT accessible is likely
larger than that at BELLE energies, one may find incon-
sistencies in a global fit if the asymptotic behaviour of
bT is not chosen appropriately Theoretical constraints
are important in light of all these issues encountered at
lower energy phenomenology, see for example Refs. [37–
43]. To do so, we follow some of the considerations made
in Ref. [44]. Thus, for this work we will look for a para-
metric MD that in bT space decays exponentially, but
that is able to describe BELLE data at least as well
as model 5 in Table I, which in the preliminary cases

TABLE III. Minimal �2
d.o.f. resulting by fitting the two para-

metric forms forMD in Table II. In each case we perform three
independent fits, one for each value T = {0.750, 0.825, 0.875},
in the ranges qT/Q < 0.2 and 0.375 < zh < 0.725. As far as
the description of the data is concerned all three cases seem
to be acceptable, see explanation in the text.

�
2
d.o.f. (fixed-T fits)

MD model T = 0.750 0.825 0.875

I 1.2 0.38 1.02
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considered so far, seems to be suitable. A possible can-
didate is shown in Table II, where for convenience we
have explicitly rewritten model 5 of Table I. Both mod-
els in Table II correspond to a power-like behaviour in
momentum space, characterized in bT space by the mod-
ified Bessel function of the second kind, times an extra
factor which we denote as F . To make the comparison
between exponential and Gaussian asymptotic behaviour
more transparent, in this preliminary study we consider
only the models in Table II. Note that even in the case
F = 1 one may recover an exponentially decaying be-
haviour asymptotically, from the Bessel function alone,
as seen in Eq. (8). We will consider this case later as
it requires a detailed explanation of possible final para-
metric forms, which account for the strong correlations
of parameters in MD related to the zh dependence, as
noted in the previous subsection.
For now, we will compare how well the models in Ta-

ble II may describe the data. Our aim is to provide a
practical example where two models that describe the
data reasonably well, are not necessarily constrained in
the asymptotically large bT limit. Decoupling the ques-
tion of what is an appropriate parametric form for the
PT behaviour of MD is not independent of the choices
to model its zh dependence. Thus we proceed as fol-
lows. First, we perform three fits at fixed values of
T = {0.750, 0.825, 0.875}, where in each case, we
include BELLE data in the region qT/Q < 0.20 and
0.375 < zh < 0.725. To accommodate the zh depen-
dence we choose a logarithmic behaviour in the function
F as shown in Table II. Since we are not fitting the three
T bins simultaneously, we will not be able to also fit gK,
which correlates to thrust, so for now we set gK = 0.
Then, we will look at a single case, one value of T and
zh, where the PT dependence is described well by both
models and look at the results in PT and bT space.

The results of the fixed-T fits are shown in Table III.
The smaller values of �2
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FIG. 5. Best-fit lines for both models in Table II, obtained
by fitting BELLE data for the kinematics T = 0.825, 0.375 <
zh < 0.725 and PT/zhQ < 0.2. Note that both lines follow
essentially the same profile in the region of the data shown.

related to the choice q = 8, which allows for a good de-
scription of the zh bins considered. Note that modifying
the zh behaviour in model IG could improve its best fit
�
2
d.o.f. as well. At this stage we consider both models as

candidates to parametrize MD, since our main interest is
to discuss about the PT dependence.

Now we look at the case zh = 0.525 and T = 0.825, for
which both models describe the data reasonably well. In
fact, as seen in Fig. 5, the models of Table II have the
same profile and almost lie on top of each other. Corre-
sponding lines in bT space are shown in Fig. 6, where it
can be seen that for values bT > 4 GeV�1 the cross sec-
tion calculated using models I and IG deviate. This is of
course due to the di↵erences in the asymptotic behaviour
of the models. This example simply illustrates that the
asymptotic behaviour of the TMD ↵ is not necessarily
constrained by BELLE data after some large value of bT.
However, the reason to prefer an asymptotic behaviour
like that of model I comes from the necessity to fit data
at lower energies in the future, for which the large-bT
Gaussian fall o↵ may not be appropriate.

From here on out we will focus on models for MD that
decay exponentially in the asymptotically large bT limit.
More precisely

log(MD) ⇠
bT!1

�C bT + o (bT) , (9)

with C a positive mass parameter and where we have
used the little-o symbol to indicate sub-linear terms in bT.
Furthermore, we will explore two di↵erent approaches,
leading to two classes of models. The first one is model
I in table Table II, which corresponds to the function of
Eq. (8) times the zh-dependent function F . The second
one, is similar to model I but sets F = 1 and models the
zh dependence through both the mass parameter M0 and
the power p of the Bessel function function of Eq. (8).

Before performing our extraction, however, we need to
set a parametric form for gK.
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FIG. 6. Best-fit lines for both models in Table II in bT space,
obtained by fitting BELLE data for the kinematics T = 0.825,
0.375 < zh < 0.725 and qT/zhQ < 0.2. Lines correspond to
those in Fig. 5. The deviation of the two theory lines after
bT > 4GeV�1 indicates the lack of sensitivity to the asymp-
totic behaviour of the models in this particular example.

C. Behavior of gK in the large-bT limit.

The usual definition of the TMD FF in the CSS for-
malism di↵ers from that introduced in Ref. [28] by a non-
perturbative function MS(bT), as explained in Section I
and given in Eq. (4a). MS(bT) is associated to soft gluon
e↵ects and originates from the fact that in the latter defi-
nition the TMDs are purely collinear objects, while in the
CSS definition soft radiation contributions are included
in the TMD definition itself. This means that the non-
perturvative function MD(bT) introduced in Eq. (1), and
discussed in Section I, cannot be used directly in e

+
e
�-

two hadron production or SIDIS processes, see Eq. (4a).
Note, however, that the non-perturbative function gK has
been defined to be the same as in the usual CSS formal-
ism, up to a trivial factor of 2, see Eq. (4b). Thus, it char-
acterizes the large distance behavior of the Collins-Soper
kernel as defined in [6]. This is perhaps one of the most
useful aspect of the formalism in Refs. [25, 28, 29, 45] in
the context of global fits, since it allows for comparisons
of the extracted gK with other recent work (see for ex-
ample Refs. [3, 4, 46, 47]). In order to choose a suitable
parametrization for gK, we use the following observation
as a guiding principle.
In general, one may write the TMD FF in bT space as

D̃(bT, ⇣) =D̃(bT, ⇣0) exp

⇢
�gK

4
log

✓
⇣

⇣0

◆��
...
�
, (10)

where only the dependence on bT and ⇣ has been written
explicitly, and the ellipsis indicate other terms containing
perturbatively calculable quantities. Using the hypothe-
sis in Eq. (9) one has that in the large-bT limit

log
⇣
D̃(bT, ⇣)

⌘
bT!1
= � CbT � g

large bT
K

4
log

✓
⇣

⇣0

◆
+ o(bT) .

(11)
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the other hand, imposing an appropriate asymptotic be-
haviour may be needed from a theoretical point of view,
as discussed in detail in [? ].

As before, we consider data in the region qT/Q < 0.2
and 0.272 < zh < 0.675, T = {0.750, 0.825, 0.875}.
We would like to test di↵erent hypotheses for the asymp-
totic behaviour of MD. As we discussed in the previ-
ous subsection, the data seem to favor a zh-dependent
parametric form for MD, which may be introduced via
mass parameters. We remark that in general the tasks
of parametrizing the bT and zh dependencies cannot be
decoupled. We show in Table II our model choices for
the bT-dependence, where in each case, we consider the
Bessel-K model, supplemented by a multiplicative func-
tion F (bT, zh). The specific logarithmic zh-dependence
has been introduced based on the preliminary discussions
of Sec. IIA, as it seems to be appropriate for the consid-
ered kinematics. For each model, we perform a fit for
each of the three bins T = {0.750, 0.825, 0.875}.

TABLE II. Models for MD in impact parameter space. All

cases shown are obtained by multiplying the Bessel-K model,

which corresponds to a power law in momentum space, and

an additional function of bT and zh.

MD =
22�p(bTM0)p�1

�(p� 1)
Kp�1(bTM0) ⇥ F (bT, zh)

Mz = M0

�
1� ⌘ log(zh)

�

Nomenclature F -model parameters

1)Bessel-K-F1 F =

✓
1 + log (1 + bTMz)

1 + (bTMz)

◆q

M0, ⌘, p , q

2)Bessel-K-F2 F =
1

1 + (bTMz)
q M0, ⌘, p , q

3)Bessel-K-Fg F = exp
�
(MgbT)2 log(zh)

�
M0, Mg, p

Minimal �2
d.o.f. for these tests, displayed in Table III,

show that the three models considered are equally ap-
propriate to describe the data in the given kinemat-
ics, regardless of their di↵erent asymptotic behaviour as
bT ! 1. It is interesting to compare results for MD

in impact parameter space under di↵erent hypotheses,
as it can give a sense of which regions in bT are really
being mapped in the minimization procedure. For con-
creteness, we show in Fig. 5 the three di↵erent models
considered, obtained by fitting data at T = 0.875, at
their respective minimal parameter values, for zh = 0.5.
There, the lines shown correspond to the rightmost col-
umn in Table III and are all able to describe the same

subset of data.

TABLE III. Minimal �2
d.o.f. resulting by fitting the three

parametric forms for MD in Table II. In each case

we perform three independent fits, one for each value

T = {0.750, 0.825, 0.875}, in the ranges qT/Q < 0.2 and

0.272 < zh < 0.675. As far as the description of the data

is concerned, all three cases seem to be acceptable.

�
2
d.o.f. (fixed-T fits)

T = 0.750 0.825 0.875

Bessel-K-F1 3.06 1.24 0.65

Bessel-K-F2 3.02 1.26 0.97

Bessel-K-Fg 2.82 1.29 0.68

The first noteworthy aspect of Fig. 5 is that, at dis-
tances of bT < 0.5GeV�1, it appears that all the models
considered are in good agreement with each other, which
is largely due to the constraint that MD ! 1 in the limit
bT ! 0, imposed in all three cases. Conversely, at large
enough distances, roughly bT > 3GeV�1, the very dis-
tinct trends of each line suggests that the precise asymp-
totic behaviour of the model for MD is not so relevant,
as far as describing the selected data is concerned. This
last point does not mean that the asymptotic behaviour
of MD is in general inconsequential, as we will discuss in
detail in the following subsection when we investigate the
bT-dependence of gK, it rather makes evident the need to
constraint the function MD in the limit bT ! 1 as it is
usually done for bT ! 0.

FIG. 5.

We will focus on the type of models that satisfy the
requirements suggested in [? ]. There, the authors pro-
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We assume that bT is less than bmax. Then there are no
large logarithms involving bT or b⇤. Using the lowest-
order formula for K̃ gives

gK(bT; bmax) '
↵s(C1/b⇤)CF

⇡
ln
�
1 + b2T/b

2
max

�
. (67)

This has b2T behavior at small bT but a slower rise above
bmax. It is the form used in Ref. [54] to optimize matching
between the perturbative calculation and gK(bT; bmax) at
moderate bT.

To compare with fitted values of gK with gK = 1
2g2b

2
T,

we propose two methods. One is to expand at small bT:

gK(bT; bmax) '
↵s(C1/b⇤)CF

⇡

b2T
b2max

, (68)

and then to replace C1/b⇤ by C1/bmax, since fits for gK
concerns bT not far from bmax. Then we equate the co-
e�cients of b2T in this formula and in the fitted gK , to
obtain

g2 ' 2↵s(C1/bmax)CF

⇡b2max

(by small bT expansion). (69)

The other method is to equate the derivatives with re-
spect to b2max at bT = bmax; this may be more represen-
tative of how gK a↵ects the evolution of the cross section
because this is where gK gives a substantial correction
to the cut-o↵ K̃. The result gives an estimate that is a
factor of two smaller:

g2 ' ↵s(C1/bmax)CF

⇡b2max

(by derivative at bmax). (70)

Neither method can exactly reproduce the fitted gK ,
since the perturbative estimate for gK has a di↵erent
functional form than the fitted gK ; the best we can do is
an approximate match.

To obtain numerical values, we use the two-loop
parametrization of ↵s(µ) from Ref. [107] with 3 active fla-
vors of quark. We make the standard choice C1 = 2e��E .
For the two standard values bmax = 0.5GeV�1 and
bmax = 1.5GeV�1, we find

CF

⇡

1

b2max

↵s(C1/bmax)

����
bmax=0.5GeV�1

⇡ 0.45GeV2, (71)

CF

⇡

1

b2max

↵s(C1/bmax)

����
bmax=1.5GeV�1

⇡ 0.13GeV2. (72)

We compare with the measured values in Table I. We
see a rough agreement, with the two methods of match-
ing a value of g2 to (67) giving results that bracket the
measured value. We deduce that some of the work in

with no dependence on bT.

g2 values in quadratic parametrizations:

bmax Fitted Expansion
Method

Derivative
Method

0.5GeV�1 0.68+0.01
�0.02 GeV2 0.9GeV2 0.45GeV2

1.5GeV�1 0.18± 0.02GeV2 0.26GeV2 0.13GeV2

TABLE I.

the fits simply reproduces perturbative predictions in a
region where the predictions have a useful, if approxi-
mate validity. We also deduce that the values of bmax

are conservative. If one wants to genuinely measure the
nonperturbative part of gK , one needs a more general pa-
rameterization and one needs to ensure that data is used
that is sensitive to higher values of bT. We will address
this issue in the next section.
Of course, the above estimates are crude and meant

only to check for general consistency. At large bT,
Eq. (67) is not expected to be an accurate parametriza-
tion of gK(bT; bmax). First, it is based on an extrapo-
lation of a low order perturbative calculation. Second,
at large bT it depends strongly on bmax. The complete
TMD factorization formalism is bmax independent, and
fully optimized fits should approximately reflect this if
they are to account for large bT behavior.
Notice that the arguments for approximately quadratic

behavior for gK(bT) at small bT equally apply to the func-
tions gj/H defined in Eq. (21). This small bT behavior
corresponds, after exponentiation, to a Gaussian for a
TMD parton density.
We should emphasize that our result that perturbation

theory approximately reproduces the fitted values of g2
does not imply that it should get them exactly correct:
The fitted values have also to allow for both uncalcu-
lated higher-order perturbative terms and for genuinely
nonperturbative e↵ects.

VII. LARGE-bT BEHAVIOR OF CORRELATION
FUNCTION

A. General properties

Appropriate parameterizations for the nonperturba-
tive large-bT behavior of TMD parton densities and of
the CSS kernel K̃ need to be informed by the expecta-
tions from the general principles of quantum field theory.
All of these quantities are certain kinds of Euclidean cor-
relation function. Therefore we generally expect them to
decay exponentially (supplemented by a power law):

1

bT
↵ e

�mbT (73)

for large distance bT. Here m is the mass of the lowest
mass state that can be exchanged in the relevant channel.
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the other hand, imposing an appropriate asymptotic be-
haviour may be needed from a theoretical point of view,
as discussed in detail in [? ].

As before, we consider data in the region qT/Q < 0.2
and 0.272 < zh < 0.675, T = {0.750, 0.825, 0.875}.
We would like to test di↵erent hypotheses for the asymp-
totic behaviour of MD. As we discussed in the previ-
ous subsection, the data seem to favor a zh-dependent
parametric form for MD, which may be introduced via
mass parameters. We remark that in general the tasks
of parametrizing the bT and zh dependencies cannot be
decoupled. We show in Table II our model choices for
the bT-dependence, where in each case, we consider the
Bessel-K model, supplemented by a multiplicative func-
tion F (bT, zh). The specific logarithmic zh-dependence
has been introduced based on the preliminary discussions
of Sec. IIA, as it seems to be appropriate for the consid-
ered kinematics. For each model, we perform a fit for
each of the three bins T = {0.750, 0.825, 0.875}.

TABLE II. Models for MD in impact parameter space. All

cases shown are obtained by multiplying the Bessel-K model,

which corresponds to a power law in momentum space, and

an additional function of bT and zh.
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Minimal �2
d.o.f. for these tests, displayed in Table III,

show that the three models considered are equally ap-
propriate to describe the data in the given kinemat-
ics, regardless of their di↵erent asymptotic behaviour as
bT ! 1. It is interesting to compare results for MD

in impact parameter space under di↵erent hypotheses,
as it can give a sense of which regions in bT are really
being mapped in the minimization procedure. For con-
creteness, we show in Fig. 5 the three di↵erent models
considered, obtained by fitting data at T = 0.875, at
their respective minimal parameter values, for zh = 0.5.
There, the lines shown correspond to the rightmost col-
umn in Table III and are all able to describe the same

subset of data.

TABLE III. Minimal �2
d.o.f. resulting by fitting the three

parametric forms for MD in Table II. In each case

we perform three independent fits, one for each value

T = {0.750, 0.825, 0.875}, in the ranges qT/Q < 0.2 and

0.272 < zh < 0.675. As far as the description of the data

is concerned, all three cases seem to be acceptable.
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d.o.f. (fixed-T fits)

T = 0.750 0.825 0.875

Bessel-K-F1 3.06 1.24 0.65

Bessel-K-F2 3.02 1.26 0.97

Bessel-K-Fg 2.82 1.29 0.68

The first noteworthy aspect of Fig. 5 is that, at dis-
tances of bT < 0.5GeV�1, it appears that all the models
considered are in good agreement with each other, which
is largely due to the constraint that MD ! 1 in the limit
bT ! 0, imposed in all three cases. Conversely, at large
enough distances, roughly bT > 3GeV�1, the very dis-
tinct trends of each line suggests that the precise asymp-
totic behaviour of the model for MD is not so relevant,
as far as describing the selected data is concerned. This
last point does not mean that the asymptotic behaviour
of MD is in general inconsequential, as we will discuss in
detail in the following subsection when we investigate the
bT-dependence of gK, it rather makes evident the need to
constraint the function MD in the limit bT ! 1 as it is
usually done for bT ! 0.
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requirements suggested in [? ]. There, the authors pro-
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FIG. 5. Best-fit lines for both models in Table II, obtained
by fitting BELLE data for the kinematics T = 0.825, 0.375 <
zh < 0.725 and PT/zhQ < 0.2. Note that both lines follow
essentially the same profile in the region of the data shown.

related to the choice q = 8, which allows for a good de-
scription of the zh bins considered. Note that modifying
the zh behaviour in model IG could improve its best fit
�
2
d.o.f. as well. At this stage we consider both models as

candidates to parametrize MD, since our main interest is
to discuss about the PT dependence.

Now we look at the case zh = 0.525 and T = 0.825, for
which both models describe the data reasonably well. In
fact, as seen in Fig. 5, the models of Table II have the
same profile and almost lie on top of each other. Corre-
sponding lines in bT space are shown in Fig. 6, where it
can be seen that for values bT > 4 GeV�1 the cross sec-
tion calculated using models I and IG deviate. This is of
course due to the di↵erences in the asymptotic behaviour
of the models. This example simply illustrates that the
asymptotic behaviour of the TMD ↵ is not necessarily
constrained by BELLE data after some large value of bT.
However, the reason to prefer an asymptotic behaviour
like that of model I comes from the necessity to fit data
at lower energies in the future, for which the large-bT
Gaussian fall o↵ may not be appropriate.

From here on out we will focus on models for MD that
decay exponentially in the asymptotically large bT limit.
More precisely

log(MD) ⇠
bT!1

�C bT + o (bT) , (9)

with C a positive mass parameter and where we have
used the little-o symbol to indicate sub-linear terms in bT.
Furthermore, we will explore two di↵erent approaches,
leading to two classes of models. The first one is model
I in table Table II, which corresponds to the function of
Eq. (8) times the zh-dependent function F . The second
one, is similar to model I but sets F = 1 and models the
zh dependence through both the mass parameter M0 and
the power p of the Bessel function function of Eq. (8).

Before performing our extraction, however, we need to
set a parametric form for gK.

FIG. 6. Best-fit lines for both models in Table II in bT space,
obtained by fitting BELLE data for the kinematics T = 0.825,
0.375 < zh < 0.725 and qT/zhQ < 0.2. Lines correspond to
those in Fig. 5. The deviation of the two theory lines after
bT > 4GeV�1 indicates the lack of sensitivity to the asymp-
totic behaviour of the models in this particular example.

C. Behavior of gK in the large-bT limit.

The usual definition of the TMD FF in the CSS for-
malism di↵ers from that introduced in Ref. [28] by a non-
perturbative function MS(bT), as explained in Section I
and given in Eq. (4a). MS(bT) is associated to soft gluon
e↵ects and originates from the fact that in the latter defi-
nition the TMDs are purely collinear objects, while in the
CSS definition soft radiation contributions are included
in the TMD definition itself. This means that the non-
perturvative function MD(bT) introduced in Eq. (1), and
discussed in Section I, cannot be used directly in e

+
e
�-

two hadron production or SIDIS processes, see Eq. (4a).
Note, however, that the non-perturbative function gK has
been defined to be the same as in the usual CSS formal-
ism, up to a trivial factor of 2, see Eq. (4b). Thus, it char-
acterizes the large distance behavior of the Collins-Soper
kernel as defined in [6]. This is perhaps one of the most
useful aspect of the formalism in Refs. [25, 28, 29, 45] in
the context of global fits, since it allows for comparisons
of the extracted gK with other recent work (see for ex-
ample Refs. [3, 4, 46, 47]). In order to choose a suitable
parametrization for gK, we use the following observation
as a guiding principle.
In general, one may write the TMD FF in bT space as

D̃(bT, ⇣) =D̃(bT, ⇣0) exp

⇢
�gK

4
log

✓
⇣

⇣0

◆��
...
�
, (10)

where only the dependence on bT and ⇣ has been written
explicitly, and the ellipsis indicate other terms containing
perturbatively calculable quantities. Using the hypothe-
sis in Eq. (9) one has that in the large-bT limit

log
⇣
D̃(bT, ⇣)

⌘
bT!1
= � CbT � g

large bT
K

4
log

✓
⇣

⇣0

◆
+ o(bT) .

(11)
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FIG. 5. Best-fit lines for both models in Table II, obtained
by fitting BELLE data for the kinematics T = 0.825, 0.375 <
zh < 0.725 and PT/zhQ < 0.2. Note that both lines follow
essentially the same profile in the region of the data shown.

related to the choice q = 8, which allows for a good de-
scription of the zh bins considered. Note that modifying
the zh behaviour in model IG could improve its best fit
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2
d.o.f. as well. At this stage we consider both models as

candidates to parametrize MD, since our main interest is
to discuss about the PT dependence.

Now we look at the case zh = 0.525 and T = 0.825, for
which both models describe the data reasonably well. In
fact, as seen in Fig. 5, the models of Table II have the
same profile and almost lie on top of each other. Corre-
sponding lines in bT space are shown in Fig. 6, where it
can be seen that for values bT > 4 GeV�1 the cross sec-
tion calculated using models I and IG deviate. This is of
course due to the di↵erences in the asymptotic behaviour
of the models. This example simply illustrates that the
asymptotic behaviour of the TMD ↵ is not necessarily
constrained by BELLE data after some large value of bT.
However, the reason to prefer an asymptotic behaviour
like that of model I comes from the necessity to fit data
at lower energies in the future, for which the large-bT
Gaussian fall o↵ may not be appropriate.

From here on out we will focus on models for MD that
decay exponentially in the asymptotically large bT limit.
More precisely

log(MD) ⇠
bT!1

�C bT + o (bT) , (9)

with C a positive mass parameter and where we have
used the little-o symbol to indicate sub-linear terms in bT.
Furthermore, we will explore two di↵erent approaches,
leading to two classes of models. The first one is model
I in table Table II, which corresponds to the function of
Eq. (8) times the zh-dependent function F . The second
one, is similar to model I but sets F = 1 and models the
zh dependence through both the mass parameter M0 and
the power p of the Bessel function function of Eq. (8).

Before performing our extraction, however, we need to
set a parametric form for gK.
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0.375 < zh < 0.725 and qT/zhQ < 0.2. Lines correspond to
those in Fig. 5. The deviation of the two theory lines after
bT > 4GeV�1 indicates the lack of sensitivity to the asymp-
totic behaviour of the models in this particular example.

C. Behavior of gK in the large-bT limit.

The usual definition of the TMD FF in the CSS for-
malism di↵ers from that introduced in Ref. [28] by a non-
perturbative function MS(bT), as explained in Section I
and given in Eq. (4a). MS(bT) is associated to soft gluon
e↵ects and originates from the fact that in the latter defi-
nition the TMDs are purely collinear objects, while in the
CSS definition soft radiation contributions are included
in the TMD definition itself. This means that the non-
perturvative function MD(bT) introduced in Eq. (1), and
discussed in Section I, cannot be used directly in e
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two hadron production or SIDIS processes, see Eq. (4a).
Note, however, that the non-perturbative function gK has
been defined to be the same as in the usual CSS formal-
ism, up to a trivial factor of 2, see Eq. (4b). Thus, it char-
acterizes the large distance behavior of the Collins-Soper
kernel as defined in [6]. This is perhaps one of the most
useful aspect of the formalism in Refs. [25, 28, 29, 45] in
the context of global fits, since it allows for comparisons
of the extracted gK with other recent work (see for ex-
ample Refs. [3, 4, 46, 47]). In order to choose a suitable
parametrization for gK, we use the following observation
as a guiding principle.
In general, one may write the TMD FF in bT space as
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zh < 0.725 and PT/zhQ < 0.2. Note that both lines follow
essentially the same profile in the region of the data shown.
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candidates to parametrize MD, since our main interest is
to discuss about the PT dependence.

Now we look at the case zh = 0.525 and T = 0.825, for
which both models describe the data reasonably well. In
fact, as seen in Fig. 5, the models of Table II have the
same profile and almost lie on top of each other. Corre-
sponding lines in bT space are shown in Fig. 6, where it
can be seen that for values bT > 4 GeV�1 the cross sec-
tion calculated using models I and IG deviate. This is of
course due to the di↵erences in the asymptotic behaviour
of the models. This example simply illustrates that the
asymptotic behaviour of the TMD ↵ is not necessarily
constrained by BELLE data after some large value of bT.
However, the reason to prefer an asymptotic behaviour
like that of model I comes from the necessity to fit data
at lower energies in the future, for which the large-bT
Gaussian fall o↵ may not be appropriate.

From here on out we will focus on models for MD that
decay exponentially in the asymptotically large bT limit.
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with C a positive mass parameter and where we have
used the little-o symbol to indicate sub-linear terms in bT.
Furthermore, we will explore two di↵erent approaches,
leading to two classes of models. The first one is model
I in table Table II, which corresponds to the function of
Eq. (8) times the zh-dependent function F . The second
one, is similar to model I but sets F = 1 and models the
zh dependence through both the mass parameter M0 and
the power p of the Bessel function function of Eq. (8).
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FIG. 6. Best-fit lines for both models in Table II in bT space,
obtained by fitting BELLE data for the kinematics T = 0.825,
0.375 < zh < 0.725 and qT/zhQ < 0.2. Lines correspond to
those in Fig. 5. The deviation of the two theory lines after
bT > 4GeV�1 indicates the lack of sensitivity to the asymp-
totic behaviour of the models in this particular example.

C. Behavior of gK in the large-bT limit.

The usual definition of the TMD FF in the CSS for-
malism di↵ers from that introduced in Ref. [28] by a non-
perturbative function MS(bT), as explained in Section I
and given in Eq. (4a). MS(bT) is associated to soft gluon
e↵ects and originates from the fact that in the latter defi-
nition the TMDs are purely collinear objects, while in the
CSS definition soft radiation contributions are included
in the TMD definition itself. This means that the non-
perturvative function MD(bT) introduced in Eq. (1), and
discussed in Section I, cannot be used directly in e
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two hadron production or SIDIS processes, see Eq. (4a).
Note, however, that the non-perturbative function gK has
been defined to be the same as in the usual CSS formal-
ism, up to a trivial factor of 2, see Eq. (4b). Thus, it char-
acterizes the large distance behavior of the Collins-Soper
kernel as defined in [6]. This is perhaps one of the most
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FIG. 5. Best-fit lines for both models in Table II, obtained
by fitting BELLE data for the kinematics T = 0.825, 0.375 <
zh < 0.725 and PT/zhQ < 0.2. Note that both lines follow
essentially the same profile in the region of the data shown.
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can be seen that for values bT > 4 GeV�1 the cross sec-
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Eq. (8) times the zh-dependent function F . The second
one, is similar to model I but sets F = 1 and models the
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Before performing our extraction, however, we need to
set a parametric form for gK.

FIG. 6. Best-fit lines for both models in Table II in bT space,
obtained by fitting BELLE data for the kinematics T = 0.825,
0.375 < zh < 0.725 and qT/zhQ < 0.2. Lines correspond to
those in Fig. 5. The deviation of the two theory lines after
bT > 4GeV�1 indicates the lack of sensitivity to the asymp-
totic behaviour of the models in this particular example.

C. Behavior of gK in the large-bT limit.

The usual definition of the TMD FF in the CSS for-
malism di↵ers from that introduced in Ref. [28] by a non-
perturbative function MS(bT), as explained in Section I
and given in Eq. (4a). MS(bT) is associated to soft gluon
e↵ects and originates from the fact that in the latter defi-
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Note, however, that the non-perturbative function gK has
been defined to be the same as in the usual CSS formal-
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perturbative function MS(bT), as explained in Section I
and given in Eq. (4a). MS(bT) is associated to soft gluon
e↵ects and originates from the fact that in the latter defi-
nition the TMDs are purely collinear objects, while in the
CSS definition soft radiation contributions are included
in the TMD definition itself. This means that the non-
perturvative function MD(bT) introduced in Eq. (1), and
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two hadron production or SIDIS processes, see Eq. (4a).
Note, however, that the non-perturbative function gK has
been defined to be the same as in the usual CSS formal-
ism, up to a trivial factor of 2, see Eq. (4b). Thus, it char-
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ample Refs. [3, 4, 46, 47]). In order to choose a suitable
parametrization for gK, we use the following observation
as a guiding principle.
In general, one may write the TMD FF in bT space as

D̃(bT, ⇣) =D̃(bT, ⇣0) exp

⇢
�gK

4
log

✓
⇣

⇣0

◆��
...
�
, (10)

where only the dependence on bT and ⇣ has been written
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posed that in the limit bT ! 1, TMDs should decay
exponentially, based in general field-theoretical consider-
ations. In our case we require that in the limit bT ! 1

log(MD) ⇠ �C bT + o (bT) , (3)

with C a positive mass parameter and where we have
used the little-o symbol to indicate terms of order smaller
than O (bT). Thus, we will concentrate on the first two
models in Table II, leaving out the The Bessel-K-Fg

model since taking its logarithm gives a quadratic leading
term in the limit bT ! 1.

C. Behaviour of gK in the large-bT limit.

D. TMDFF z-dependence and choice of collinear
FFs

Appendix A: notes

• collins reogers 2015:

Both the perturbative calculability of the small
bT dependence and the universality of the
large bT dependence are important fea-
tures of the TMD factorization theorem,
and predictive power is optimized when
both are fully exploited

gk is strongly universal, thus providing an im-
portant test for TMD factorization.

... we agree with Schweitzer et al. [53] that
TMD parton densities and fragmentation
functions should decay exponentially at
large bT, with a decay length correspond-
ing to the mass of the lowest relevant
state.

As regards the CSS evolution kernel K˜ , the
same argument suggests that it goes to a
constant at large bT (and hence that our
master function A goes to zero).

The quadratic form for K˜ (and hence A) can
only be valid over a limited range of mod-
erately large bT. One should not continue
the b2 T form to the larger values of bT
that are important for processes at low
Q. The result is then that the evolution of
TMD pdfs is much weaker at low Q than
would otherwise happen. A related pro-
posal for the nonperturbative form was
given by Collins and Soper [54]. Their
form was logarithmic instead of quadratic,
and the particular formula was designed
to provide a better match to the pertur-
bative part of K˜ in the extrapolation to
large bT
Appendix B: to include

• in CR paper, they shoe fig 1 and explain what our
fig 5 shows. Make remarks on this.

log(MD) ⇠ �C bT + o (bT) ,

TMDFF ⇠ MD exp

✓
�gK(bT)

4
log

✓
⇣

⇣0

◆◆

log (TMDFF) ⇠ �CbT � gK(bT)

4
log

✓
⇣

⇣0

◆
+ o (bT)

gK(bT) = O (bT)

gK(bT) = o (bT)

⇣0 ⇣

}
In general
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FIG. 5. Best-fit lines for both models in Table II, obtained
by fitting BELLE data for the kinematics T = 0.825, 0.375 <
zh < 0.725 and PT/zhQ < 0.2. Note that both lines follow
essentially the same profile in the region of the data shown.

related to the choice q = 8, which allows for a good de-
scription of the zh bins considered. Note that modifying
the zh behaviour in model IG could improve its best fit
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2
d.o.f. as well. At this stage we consider both models as

candidates to parametrize MD, since our main interest is
to discuss about the PT dependence.

Now we look at the case zh = 0.525 and T = 0.825, for
which both models describe the data reasonably well. In
fact, as seen in Fig. 5, the models of Table II have the
same profile and almost lie on top of each other. Corre-
sponding lines in bT space are shown in Fig. 6, where it
can be seen that for values bT > 4 GeV�1 the cross sec-
tion calculated using models I and IG deviate. This is of
course due to the di↵erences in the asymptotic behaviour
of the models. This example simply illustrates that the
asymptotic behaviour of the TMD ↵ is not necessarily
constrained by BELLE data after some large value of bT.
However, the reason to prefer an asymptotic behaviour
like that of model I comes from the necessity to fit data
at lower energies in the future, for which the large-bT
Gaussian fall o↵ may not be appropriate.

From here on out we will focus on models for MD that
decay exponentially in the asymptotically large bT limit.
More precisely

log(MD) ⇠
bT!1

�C bT + o (bT) , (9)

with C a positive mass parameter and where we have
used the little-o symbol to indicate sub-linear terms in bT.
Furthermore, we will explore two di↵erent approaches,
leading to two classes of models. The first one is model
I in table Table II, which corresponds to the function of
Eq. (8) times the zh-dependent function F . The second
one, is similar to model I but sets F = 1 and models the
zh dependence through both the mass parameter M0 and
the power p of the Bessel function function of Eq. (8).

Before performing our extraction, however, we need to
set a parametric form for gK.
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obtained by fitting BELLE data for the kinematics T = 0.825,
0.375 < zh < 0.725 and qT/zhQ < 0.2. Lines correspond to
those in Fig. 5. The deviation of the two theory lines after
bT > 4GeV�1 indicates the lack of sensitivity to the asymp-
totic behaviour of the models in this particular example.
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The usual definition of the TMD FF in the CSS for-
malism di↵ers from that introduced in Ref. [28] by a non-
perturbative function MS(bT), as explained in Section I
and given in Eq. (4a). MS(bT) is associated to soft gluon
e↵ects and originates from the fact that in the latter defi-
nition the TMDs are purely collinear objects, while in the
CSS definition soft radiation contributions are included
in the TMD definition itself. This means that the non-
perturvative function MD(bT) introduced in Eq. (1), and
discussed in Section I, cannot be used directly in e
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two hadron production or SIDIS processes, see Eq. (4a).
Note, however, that the non-perturbative function gK has
been defined to be the same as in the usual CSS formal-
ism, up to a trivial factor of 2, see Eq. (4b). Thus, it char-
acterizes the large distance behavior of the Collins-Soper
kernel as defined in [6]. This is perhaps one of the most
useful aspect of the formalism in Refs. [25, 28, 29, 45] in
the context of global fits, since it allows for comparisons
of the extracted gK with other recent work (see for ex-
ample Refs. [3, 4, 46, 47]). In order to choose a suitable
parametrization for gK, we use the following observation
as a guiding principle.
In general, one may write the TMD FF in bT space as

D̃(bT, ⇣) =D̃(bT, ⇣0) exp
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The usual definition of the TMD FF in the CSS for-
malism di↵ers from that introduced in Ref. [28] by a non-
perturbative function MS(bT), as explained in Section I
and given in Eq. (4a). MS(bT) is associated to soft gluon
e↵ects and originates from the fact that in the latter defi-
nition the TMDs are purely collinear objects, while in the
CSS definition soft radiation contributions are included
in the TMD definition itself. This means that the non-
perturvative function MD(bT) introduced in Eq. (1), and
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two hadron production or SIDIS processes, see Eq. (4a).
Note, however, that the non-perturbative function gK has
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parametrization for gK, we use the following observation
as a guiding principle.
In general, one may write the TMD FF in bT space as

D̃(bT, ⇣) =D̃(bT, ⇣0) exp

⇢
�gK

4
log

✓
⇣

⇣0

◆��
...
�
, (10)

where only the dependence on bT and ⇣ has been written
explicitly, and the ellipsis indicate other terms containing
perturbatively calculable quantities. Using the hypothe-
sis in Eq. (9) one has that in the large-bT limit

log
⇣
D̃(bT, ⇣)

⌘
bT!1
= � CbT � g

large bT
K

4
log

✓
⇣

⇣0

◆
+ o(bT) .

(11)

5

posed that in the limit bT ! 1, TMDs should decay
exponentially, based in general field-theoretical consider-
ations. In our case we require that in the limit bT ! 1

log(MD) ⇠ �C bT + o (bT) , (3)

with C a positive mass parameter and where we have
used the little-o symbol to indicate terms of order smaller
than O (bT). Thus, we will concentrate on the first two
models in Table II, leaving out the The Bessel-K-Fg

model since taking its logarithm gives a quadratic leading
term in the limit bT ! 1.

C. Behaviour of gK in the large-bT limit.

D. TMDFF z-dependence and choice of collinear
FFs

Appendix A: notes

• collins reogers 2015:

Both the perturbative calculability of the small
bT dependence and the universality of the
large bT dependence are important fea-
tures of the TMD factorization theorem,
and predictive power is optimized when
both are fully exploited

gk is strongly universal, thus providing an im-
portant test for TMD factorization.

... we agree with Schweitzer et al. [53] that
TMD parton densities and fragmentation
functions should decay exponentially at
large bT, with a decay length correspond-
ing to the mass of the lowest relevant
state.

As regards the CSS evolution kernel K˜ , the
same argument suggests that it goes to a
constant at large bT (and hence that our
master function A goes to zero).

The quadratic form for K˜ (and hence A) can
only be valid over a limited range of mod-
erately large bT. One should not continue
the b2 T form to the larger values of bT
that are important for processes at low
Q. The result is then that the evolution of
TMD pdfs is much weaker at low Q than
would otherwise happen. A related pro-
posal for the nonperturbative form was
given by Collins and Soper [54]. Their
form was logarithmic instead of quadratic,
and the particular formula was designed
to provide a better match to the pertur-
bative part of K˜ in the extrapolation to
large bT
Appendix B: to include

• in CR paper, they shoe fig 1 and explain what our
fig 5 shows. Make remarks on this.

log(MD) ⇠ �C bT + o (bT) ,

TMDFF ⇠ MD exp

✓
�gK(bT)

4
log

✓
⇣

⇣0

◆◆

log (TMDFF) ⇠ �CbT � gK(bT)

4
log

✓
⇣

⇣0

◆
+ o (bT)

gK(bT) = O (bT)

gK(bT) = o (bT)

⇣0 ⇣

}
In general

With TMD  
model

Asymptotic behaviour of TMD  
preserved under evolution
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TABLE IV. Models for MD and gK in impact parameter space
for our main analysis. MD is obtained by multiplying the BK
model, which corresponds to a power law in momentum space,
with an additional function of bT and zh.

MD =
22�p(bTM0)p�1

�(p� 1)
Kp�1(bTM0) ⇥ F (bT, zh)

ID MD model parameters

I F =

 
1 + log

�
1 + (bTMz)2

�

1 + (bTMz)2

!q

M0, M1

p = 1.51, q = 8

Mz = �M1 log(zh)

II F = 1
z0

Mz = Mh

1

z f(z)2

s
3

1� f(z)

pz = 1 +
3

2

f(z)

1� f(z)

f(z) = 1� (1� z)� , � = 1�z0
z0

gK model

A gK = log (1 + (bTMK)pK) MK, pK

B gK = MKb
(1�2pK)
T

MK, pK

We thus minimize �
2 with respect to the free param-

eters (z0, MK, pK) for models IIA and IIB. In these two
cases, as for model I, we will estimate statistical errors by
determining the 2� confidence region in parameter space.
Note that, while parameter space shown in next section
for model II has a distortion respect to elliptical shapes,
we have checked that rescaling the parameters allows to
correct for this. Nonetheless, we present results in terms
of (z0, MK, pK) since they are closely related to features
of the data.

Following the above considerations, the main results of
our analysis will be presented in the next subsection for
all of our models.

F. Phenomenological Results.

With our final choices, we perform fits for each of the
considered models, labeled IA, IB, IIA, IIB, where ”I”
and ”II” indicate the choice of parametrization for MD

while ”A” and ”B” indicate the model chosen for gK, ac-

TABLE V. Minimal �2
d.o.f. obtained by fitting models IA and

IB, according to table Table IV. In each case we perform
fits in the kinematical region of Eq. (21) and Eq. (22). In
both cases IA and IB, all dimensionless parameters are fixed,
indicated by in the table by a star. Fixed values as explained
in Sec. II E.

qT/Q < 0.15 (pts = 168)
IA IB

�
2
d.o.f. 1.25 1.19

M0(GeV) 0.300+0.075
�0.062 0.003+0.089

�0.003

M1(GeV) 0.522+0.037
�0.041 0.520+0.027

�0.040

p
⇤ 1.51 1.51

q
⇤ 8 8

MK(GeV) 1.305+0.139
�0.146 0.904+0.037

�0.086

p
⇤
K 0.609 0.229

cording to the notation introduced in Table IV. In each
case we perform a �

2-minimization procedure using MI-
NUIT [51], fitting a total of 3 parameters in each model.
We estimate parameter errors by considering 2� confi-
dence regions. In other words, for each model we consider
configurations in parameter space around the minimal
one, varying all parameters simultaneously and accept-
ing those for which �

2
i
< �

2
0+��

2, with ��
2 = 8.02; this

value of ��
2 is consistent with varying three parameters

simultaneously. Final results for models IA and IB are
reported in Table V. For models IIA and IIB, results are
displayed in Table VI.

From a superficial look at Table V, one may conclude
that the quality of model IB is higher, given the smaller
values of �2

d.o.f.. However, we note that model IB has the
disadvantage that the ellipsoidal approximation extends
down to negative values of M0, which must be excluded.
This is reflected by the asymmetric errors in M0 and MK

in the third column of Table V.

Fits performed with model II have slightly higher �2s,
as shown in Table VI. This is probably due to the fact
that this model, being more tightly constrained, with
only one free parameter controlling the zh behaviour of
MD, shows a limited flexibility compared to model I.
Nonetheless clear di↵erences between models cannot be
observed when comparing to data. We thus consider both
models I and II as equally acceptable to describe the
general profile of our functions MD and gK. We choose
model IA to display the agreement of our predicted cross
sections to the BELLE data in Fig. 8, noting that cor-
responding comparisons for models IB, IIA, IIB would
indeed be very similar. Fig. 8 shows two types of errors

We consider two 
models; power law 

as starting point
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TABLE IV. Models for MD and gK in impact parameter space
for our main analysis. MD is obtained by multiplying the BK
model, which corresponds to a power law in momentum space,
with an additional function of bT and zh.

MD =
22�p(bTM0)p�1

�(p� 1)
Kp�1(bTM0) ⇥ F (bT, zh)

ID MD model parameters

I F =

 
1 + log

�
1 + (bTMz)2

�

1 + (bTMz)2

!q

M0, M1

p = 1.51, q = 8

Mz = �M1 log(zh)

II F = 1
z0

Mz = Mh

1

z f(z)2

s
3

1� f(z)

pz = 1 +
3

2

f(z)

1� f(z)

f(z) = 1� (1� z)� , � = 1�z0
z0

gK model

A gK = log (1 + (bTMK)pK) MK, pK

B gK = MKb
(1�2pK)
T

MK, pK

We thus minimize �
2 with respect to the free param-

eters (z0, MK, pK) for models IIA and IIB. In these two
cases, as for model I, we will estimate statistical errors by
determining the 2� confidence region in parameter space.
Note that, while parameter space shown in next section
for model II has a distortion respect to elliptical shapes,
we have checked that rescaling the parameters allows to
correct for this. Nonetheless, we present results in terms
of (z0, MK, pK) since they are closely related to features
of the data.

Following the above considerations, the main results of
our analysis will be presented in the next subsection for
all of our models.

F. Phenomenological Results.

With our final choices, we perform fits for each of the
considered models, labeled IA, IB, IIA, IIB, where ”I”
and ”II” indicate the choice of parametrization for MD

while ”A” and ”B” indicate the model chosen for gK, ac-

TABLE V. Minimal �2
d.o.f. obtained by fitting models IA and

IB, according to table Table IV. In each case we perform
fits in the kinematical region of Eq. (21) and Eq. (22). In
both cases IA and IB, all dimensionless parameters are fixed,
indicated by in the table by a star. Fixed values as explained
in Sec. II E.

qT/Q < 0.15 (pts = 168)
IA IB

�
2
d.o.f. 1.25 1.19

M0(GeV) 0.300+0.075
�0.062 0.003+0.089

�0.003

M1(GeV) 0.522+0.037
�0.041 0.520+0.027

�0.040

p
⇤ 1.51 1.51

q
⇤ 8 8

MK(GeV) 1.305+0.139
�0.146 0.904+0.037

�0.086

p
⇤
K 0.609 0.229

cording to the notation introduced in Table IV. In each
case we perform a �

2-minimization procedure using MI-
NUIT [51], fitting a total of 3 parameters in each model.
We estimate parameter errors by considering 2� confi-
dence regions. In other words, for each model we consider
configurations in parameter space around the minimal
one, varying all parameters simultaneously and accept-
ing those for which �

2
i
< �

2
0+��

2, with ��
2 = 8.02; this

value of ��
2 is consistent with varying three parameters

simultaneously. Final results for models IA and IB are
reported in Table V. For models IIA and IIB, results are
displayed in Table VI.

From a superficial look at Table V, one may conclude
that the quality of model IB is higher, given the smaller
values of �2

d.o.f.. However, we note that model IB has the
disadvantage that the ellipsoidal approximation extends
down to negative values of M0, which must be excluded.
This is reflected by the asymmetric errors in M0 and MK

in the third column of Table V.

Fits performed with model II have slightly higher �2s,
as shown in Table VI. This is probably due to the fact
that this model, being more tightly constrained, with
only one free parameter controlling the zh behaviour of
MD, shows a limited flexibility compared to model I.
Nonetheless clear di↵erences between models cannot be
observed when comparing to data. We thus consider both
models I and II as equally acceptable to describe the
general profile of our functions MD and gK. We choose
model IA to display the agreement of our predicted cross
sections to the BELLE data in Fig. 8, noting that cor-
responding comparisons for models IB, IIA, IIB would
indeed be very similar. Fig. 8 shows two types of errors

I focus on gK since it can be  
compared to other extractions.  

Recall that the TMDFF in this case is differs  
from the  usual definition by a soft factor.
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TABLE IV. Models for MD and gK in impact parameter space
for our main analysis. MD is obtained by multiplying the BK
model, which corresponds to a power law in momentum space,
with an additional function of bT and zh.

MD =
22�p(bTM0)p�1

�(p� 1)
Kp�1(bTM0) ⇥ F (bT, zh)

ID MD model parameters

I F =

 
1 + log

�
1 + (bTMz)2

�

1 + (bTMz)2

!q

M0, M1

p = 1.51, q = 8

Mz = �M1 log(zh)

II F = 1
z0

Mz = Mh

1

z f(z)2

s
3

1� f(z)

pz = 1 +
3

2

f(z)

1� f(z)

f(z) = 1� (1� z)� , � = 1�z0
z0

gK model

A gK = log (1 + (bTMK)pK) MK, pK

B gK = MKb
(1�2pK)
T

MK, pK

We thus minimize �
2 with respect to the free param-

eters (z0, MK, pK) for models IIA and IIB. In these two
cases, as for model I, we will estimate statistical errors by
determining the 2� confidence region in parameter space.
Note that, while parameter space shown in next section
for model II has a distortion respect to elliptical shapes,
we have checked that rescaling the parameters allows to
correct for this. Nonetheless, we present results in terms
of (z0, MK, pK) since they are closely related to features
of the data.

Following the above considerations, the main results of
our analysis will be presented in the next subsection for
all of our models.

F. Phenomenological Results.

With our final choices, we perform fits for each of the
considered models, labeled IA, IB, IIA, IIB, where ”I”
and ”II” indicate the choice of parametrization for MD

while ”A” and ”B” indicate the model chosen for gK, ac-

TABLE V. Minimal �2
d.o.f. obtained by fitting models IA and

IB, according to table Table IV. In each case we perform
fits in the kinematical region of Eq. (21) and Eq. (22). In
both cases IA and IB, all dimensionless parameters are fixed,
indicated by in the table by a star. Fixed values as explained
in Sec. II E.

qT/Q < 0.15 (pts = 168)
IA IB

�
2
d.o.f. 1.25 1.19

M0(GeV) 0.300+0.075
�0.062 0.003+0.089

�0.003

M1(GeV) 0.522+0.037
�0.041 0.520+0.027

�0.040

p
⇤ 1.51 1.51

q
⇤ 8 8

MK(GeV) 1.305+0.139
�0.146 0.904+0.037

�0.086

p
⇤
K 0.609 0.229

cording to the notation introduced in Table IV. In each
case we perform a �

2-minimization procedure using MI-
NUIT [51], fitting a total of 3 parameters in each model.
We estimate parameter errors by considering 2� confi-
dence regions. In other words, for each model we consider
configurations in parameter space around the minimal
one, varying all parameters simultaneously and accept-
ing those for which �

2
i
< �

2
0+��

2, with ��
2 = 8.02; this

value of ��
2 is consistent with varying three parameters

simultaneously. Final results for models IA and IB are
reported in Table V. For models IIA and IIB, results are
displayed in Table VI.

From a superficial look at Table V, one may conclude
that the quality of model IB is higher, given the smaller
values of �2

d.o.f.. However, we note that model IB has the
disadvantage that the ellipsoidal approximation extends
down to negative values of M0, which must be excluded.
This is reflected by the asymmetric errors in M0 and MK

in the third column of Table V.

Fits performed with model II have slightly higher �2s,
as shown in Table VI. This is probably due to the fact
that this model, being more tightly constrained, with
only one free parameter controlling the zh behaviour of
MD, shows a limited flexibility compared to model I.
Nonetheless clear di↵erences between models cannot be
observed when comparing to data. We thus consider both
models I and II as equally acceptable to describe the
general profile of our functions MD and gK. We choose
model IA to display the agreement of our predicted cross
sections to the BELLE data in Fig. 8, noting that cor-
responding comparisons for models IB, IIA, IIB would
indeed be very similar. Fig. 8 shows two types of errors
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TABLE VI. Minimal �2
d.o.f. obtained by fitting models IIA and

IIB, according to table Table IV. In each case we perform fits
in the kinematical region of Eq. (21) and Eq. (22). There are
no nuisance parameters in model II.

qT/Q < 0.15 (pts = 168)
IIA IIB

�
2
d.o.f. 1.35 1.33

z0 0.574+0.039
�0.041 0.556+0.047

�0.051

MK(GeV) 1.633+0.103
�0.105 0.687+0.114

�0.171

pk 0.588+0.127
�0.141 0.293+0.047

�0.038

bands. Darker colored bands represent the statistical un-
certainty of the fit. The lighter colored bands are an
estimate of the error induced by the collinear fragmenta-
tion functions used in the analysis. They are produced
by refitting the model function for each of the replicas
provided by the NNFFs NLO extraction of Refs. [33]

For this estimate, only about 65% of the NNFFs repli-
cas allowed for a convergent fit. A more detailed study
of such errors is a necessity in this type of studies that
need constraints from independent analyses. For now,
we consider our estimate as a useful tool to understand
the e↵ect of the choice of collinear FFs in a TMD extrac-
tion. In fact, it is useful to observe in Fig. 8 that errors
from the collinear functions are consistently larger than
statistical errors. Arguably, the former render a more
realistic picture of the precision at which TMDs can be
extracted from data. It is clear from Fig. 8 that the
quality of the description of data deteriorates at smaller
values of T . This is not surprising since the formalism
employed [25, 28, 29] is expected to fail at smaller values
of thrust, where the topology of the e

+
e
� ! hX events

starts deviating from a 2-jet like configuration.
Further developments in the theoretical treatment of

the interplay between the rapidity divergence regulariza-
tion and the thrust dependence will likely improve the
quality of the extraction by allowing the possible inclu-
sion of more data points while achieving an improved
agreement to data [25]. We leave this for future work [30].

Interesting results are found about gK(bT ). We focus
on the study of the large bT (i.e. small PT ) behaviour of
the fitted cross sections, leaving to further analyses the
exploration of the small bT region, on which we are unable
to draw definite conclusions, as explained in Sec. IID.
Our fit is rather sensitive to the modulation of gK in the
large bT region. Remarkably, it shows a strong preference
for a sub-linear power or logarithmic raise of gK, while
definitely ruling out the b

2
T or b4T behaviour at large bT.

We stress that by large bT, here we mean “the largest bT
experimentally accesible”, as the asymptotic behaviour
may not be so relevant for this data set, as discussed in

Sec. II B.
It is important to understand the strength of corre-

lations between MD and gK and the impact of model
choices in the extraction of profile functions. Although
these two points are not necessarily unrelated, we discuss
them separately in what follows.
Firstly, regarding correlations between MD and gK for

a given model, in an ideal scenario one would expect them
to be mild, which would provide some level of confidence
when comparing results to other analyses or data sets.
This situation is however not guaranteed. We find that
in fact MD and gK are correlated, as shown in Fig. 9,
where correlations between MK and the mass parameters
of MD, M0 and M1 are displayed for model IA, and in
Fig. 10 where analogous scatter plots are presented for
model IIB, for the correlation of z0 with MK and pK. We
obtain analogous results for model IB, with the added
feature that confidence regions in parameter space appear
as ellipses truncated in the region M0 < 0. For models of
type II, the correlation betweenMD and gK appears to be
stronger than in the parametrizations of type I, so much
so that a slight residual deformation from the ellipsoidal
form is still visible in Fig. 10, although the constraints
intrinsically built in model I drastically limit the number
of its free parameters. We checked that a transformation
of parameters MK and pK render scatter plots with an
approximate elliptical shape. It is noteworthy, that the
regions corresponding to 2� confidence level have well
defined contours, allowing for a reliable determination of
the error a↵ecting the extracted parameters.
Secondly, we find that the profile of the extracted func-

tions strongly depends on model choices. Note that the
full TMD in momentum space, shown in Fig. 11, shows
di↵erences beyond statistical error bands. Discrepancies
are more visible when considering separately the results
obtained for the extractions of MD and gK, as seen in
Fig. 12 where the profile functions di↵er beyond statisti-
cal error bands. As such, those discrepancies should be
considered as a kind of theoretical error. While this is
only a rough estimate of one kind of theoretical uncer-
tainties, it makes the case that statistical uncertainties
are generally not enough to asses the quality of an extrac-
tion. Even though this is specially the case in studies like
the present one, where only one process is considered, it
is a matter of concern even for global fits.
We now compare our results against other recent

TMD-analyses. Since the relevant TMD FF in our stud-
ies is di↵erent from that of the usual CSS, SCET and
related treatments (see Eq. (4a)), we can only compare
our results for the CS kernel which, up to trivial constant
factors, is the same in each scheme. In Fig. 13 we plot
the CS kernel [6, 50] computed to NLL-accuracy

K̃(bT;µ) =
1

2

"
g
K
1 (�) +

1

L?

b

g
K
2 (�)

�
� 1

2
gK(bT ), (26)

where the functions gK1 and g
K
2 , which depend only on the

combination � = 2�0 aS(µ)L?

b
, with L

?

b
= log (µ/µb?),

Comparison of all  
models similar  

(within error bands)
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TABLE IV. Models for MD and gK in impact parameter space
for our main analysis. MD is obtained by multiplying the BK
model, which corresponds to a power law in momentum space,
with an additional function of bT and zh.

MD =
22�p(bTM0)p�1

�(p� 1)
Kp�1(bTM0) ⇥ F (bT, zh)

ID MD model parameters

I F =

 
1 + log

�
1 + (bTMz)2

�

1 + (bTMz)2

!q

M0, M1

p = 1.51, q = 8

Mz = �M1 log(zh)

II F = 1
z0

Mz = Mh

1

z f(z)2

s
3

1� f(z)

pz = 1 +
3

2

f(z)

1� f(z)

f(z) = 1� (1� z)� , � = 1�z0
z0

gK model

A gK = log (1 + (bTMK)pK) MK, pK

B gK = MKb
(1�2pK)
T

MK, pK

We thus minimize �
2 with respect to the free param-

eters (z0, MK, pK) for models IIA and IIB. In these two
cases, as for model I, we will estimate statistical errors by
determining the 2� confidence region in parameter space.
Note that, while parameter space shown in next section
for model II has a distortion respect to elliptical shapes,
we have checked that rescaling the parameters allows to
correct for this. Nonetheless, we present results in terms
of (z0, MK, pK) since they are closely related to features
of the data.

Following the above considerations, the main results of
our analysis will be presented in the next subsection for
all of our models.

F. Phenomenological Results.

With our final choices, we perform fits for each of the
considered models, labeled IA, IB, IIA, IIB, where ”I”
and ”II” indicate the choice of parametrization for MD

while ”A” and ”B” indicate the model chosen for gK, ac-

TABLE V. Minimal �2
d.o.f. obtained by fitting models IA and

IB, according to table Table IV. In each case we perform
fits in the kinematical region of Eq. (21) and Eq. (22). In
both cases IA and IB, all dimensionless parameters are fixed,
indicated by in the table by a star. Fixed values as explained
in Sec. II E.

qT/Q < 0.15 (pts = 168)
IA IB

�
2
d.o.f. 1.25 1.19

M0(GeV) 0.300+0.075
�0.062 0.003+0.089

�0.003

M1(GeV) 0.522+0.037
�0.041 0.520+0.027

�0.040

p
⇤ 1.51 1.51

q
⇤ 8 8

MK(GeV) 1.305+0.139
�0.146 0.904+0.037

�0.086

p
⇤
K 0.609 0.229

cording to the notation introduced in Table IV. In each
case we perform a �

2-minimization procedure using MI-
NUIT [51], fitting a total of 3 parameters in each model.
We estimate parameter errors by considering 2� confi-
dence regions. In other words, for each model we consider
configurations in parameter space around the minimal
one, varying all parameters simultaneously and accept-
ing those for which �

2
i
< �

2
0+��

2, with ��
2 = 8.02; this

value of ��
2 is consistent with varying three parameters

simultaneously. Final results for models IA and IB are
reported in Table V. For models IIA and IIB, results are
displayed in Table VI.

From a superficial look at Table V, one may conclude
that the quality of model IB is higher, given the smaller
values of �2

d.o.f.. However, we note that model IB has the
disadvantage that the ellipsoidal approximation extends
down to negative values of M0, which must be excluded.
This is reflected by the asymmetric errors in M0 and MK

in the third column of Table V.

Fits performed with model II have slightly higher �2s,
as shown in Table VI. This is probably due to the fact
that this model, being more tightly constrained, with
only one free parameter controlling the zh behaviour of
MD, shows a limited flexibility compared to model I.
Nonetheless clear di↵erences between models cannot be
observed when comparing to data. We thus consider both
models I and II as equally acceptable to describe the
general profile of our functions MD and gK. We choose
model IA to display the agreement of our predicted cross
sections to the BELLE data in Fig. 8, noting that cor-
responding comparisons for models IB, IIA, IIB would
indeed be very similar. Fig. 8 shows two types of errors
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TABLE VI. Minimal �2
d.o.f. obtained by fitting models IIA and

IIB, according to table Table IV. In each case we perform fits
in the kinematical region of Eq. (21) and Eq. (22). There are
no nuisance parameters in model II.

qT/Q < 0.15 (pts = 168)
IIA IIB

�
2
d.o.f. 1.35 1.33

z0 0.574+0.039
�0.041 0.556+0.047

�0.051

MK(GeV) 1.633+0.103
�0.105 0.687+0.114

�0.171

pk 0.588+0.127
�0.141 0.293+0.047

�0.038

bands. Darker colored bands represent the statistical un-
certainty of the fit. The lighter colored bands are an
estimate of the error induced by the collinear fragmenta-
tion functions used in the analysis. They are produced
by refitting the model function for each of the replicas
provided by the NNFFs NLO extraction of Refs. [33]

For this estimate, only about 65% of the NNFFs repli-
cas allowed for a convergent fit. A more detailed study
of such errors is a necessity in this type of studies that
need constraints from independent analyses. For now,
we consider our estimate as a useful tool to understand
the e↵ect of the choice of collinear FFs in a TMD extrac-
tion. In fact, it is useful to observe in Fig. 8 that errors
from the collinear functions are consistently larger than
statistical errors. Arguably, the former render a more
realistic picture of the precision at which TMDs can be
extracted from data. It is clear from Fig. 8 that the
quality of the description of data deteriorates at smaller
values of T . This is not surprising since the formalism
employed [25, 28, 29] is expected to fail at smaller values
of thrust, where the topology of the e

+
e
� ! hX events

starts deviating from a 2-jet like configuration.
Further developments in the theoretical treatment of

the interplay between the rapidity divergence regulariza-
tion and the thrust dependence will likely improve the
quality of the extraction by allowing the possible inclu-
sion of more data points while achieving an improved
agreement to data [25]. We leave this for future work [30].

Interesting results are found about gK(bT ). We focus
on the study of the large bT (i.e. small PT ) behaviour of
the fitted cross sections, leaving to further analyses the
exploration of the small bT region, on which we are unable
to draw definite conclusions, as explained in Sec. IID.
Our fit is rather sensitive to the modulation of gK in the
large bT region. Remarkably, it shows a strong preference
for a sub-linear power or logarithmic raise of gK, while
definitely ruling out the b

2
T or b4T behaviour at large bT.

We stress that by large bT, here we mean “the largest bT
experimentally accesible”, as the asymptotic behaviour
may not be so relevant for this data set, as discussed in

Sec. II B.
It is important to understand the strength of corre-

lations between MD and gK and the impact of model
choices in the extraction of profile functions. Although
these two points are not necessarily unrelated, we discuss
them separately in what follows.
Firstly, regarding correlations between MD and gK for

a given model, in an ideal scenario one would expect them
to be mild, which would provide some level of confidence
when comparing results to other analyses or data sets.
This situation is however not guaranteed. We find that
in fact MD and gK are correlated, as shown in Fig. 9,
where correlations between MK and the mass parameters
of MD, M0 and M1 are displayed for model IA, and in
Fig. 10 where analogous scatter plots are presented for
model IIB, for the correlation of z0 with MK and pK. We
obtain analogous results for model IB, with the added
feature that confidence regions in parameter space appear
as ellipses truncated in the region M0 < 0. For models of
type II, the correlation betweenMD and gK appears to be
stronger than in the parametrizations of type I, so much
so that a slight residual deformation from the ellipsoidal
form is still visible in Fig. 10, although the constraints
intrinsically built in model I drastically limit the number
of its free parameters. We checked that a transformation
of parameters MK and pK render scatter plots with an
approximate elliptical shape. It is noteworthy, that the
regions corresponding to 2� confidence level have well
defined contours, allowing for a reliable determination of
the error a↵ecting the extracted parameters.
Secondly, we find that the profile of the extracted func-

tions strongly depends on model choices. Note that the
full TMD in momentum space, shown in Fig. 11, shows
di↵erences beyond statistical error bands. Discrepancies
are more visible when considering separately the results
obtained for the extractions of MD and gK, as seen in
Fig. 12 where the profile functions di↵er beyond statisti-
cal error bands. As such, those discrepancies should be
considered as a kind of theoretical error. While this is
only a rough estimate of one kind of theoretical uncer-
tainties, it makes the case that statistical uncertainties
are generally not enough to asses the quality of an extrac-
tion. Even though this is specially the case in studies like
the present one, where only one process is considered, it
is a matter of concern even for global fits.
We now compare our results against other recent

TMD-analyses. Since the relevant TMD FF in our stud-
ies is di↵erent from that of the usual CSS, SCET and
related treatments (see Eq. (4a)), we can only compare
our results for the CS kernel which, up to trivial constant
factors, is the same in each scheme. In Fig. 13 we plot
the CS kernel [6, 50] computed to NLL-accuracy

K̃(bT;µ) =
1

2

"
g
K
1 (�) +

1

L?

b

g
K
2 (�)

�
� 1

2
gK(bT ), (26)

where the functions gK1 and g
K
2 , which depend only on the

combination � = 2�0 aS(µ)L?

b
, with L

?

b
= log (µ/µb?),
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FIG. 8. Results of fitting model IA from Table IV, in the kinematical region of Eq. (21) and Eq. (22). Darker shaded bands
represent the statistical uncertainty of the fit at 2� confidence level, and correspond to the parameter configurations of Fig. 9.
The lighter shaded bands are an estimate of the error induced by the collinear fragmentation functions used in the analysis,
and are produced by refitting the model function for each of the replicas provided by the NNFFs NLO extraction of [33]. For a
better visualization of results, central lines are not included, but they generally lie in the middle of the thin, darker statistical
error bands. Models IB, IIA, IIB give analogous results. We do not show them in the plot as they would be indistinguishable.

(a) (b)

FIG. 9. 2� confidence regions centered around the minimum configuration, shown in green, for the fit of model IA of IV in the
kinematical region of Eq. (21) and Eq. (22).

are reported in Appendix A. Our extraction of the CS
kernel for all our models is compared to the results ob-
tained in the analyses of PV19 [4] and SV19 [47]5. For
clarity, we don’t show central lines but only error bands

5
Note that for the CS kernel, PV19 follows the conventions of

Ref. [6], the SV19 results must be multiplied by a factor of �2

and ours should be divided by a factor 2.

in each case. Fig. 13 shows a good agreement between
our extraction of the CS kernel and the SV19 analysis in
the region just above bT ⇠ 2 GeV�1. Note that these two
extractions are based on di↵erent factorization schemes
and exploit di↵erent data sets. The large bT behaviour
of our extraction is clearly di↵erent from the PV19 re-
sults, which adopts a b

4
T asymptotic behaviour in order

to describe Drell-Yan production data from di↵erent ex-
periments on a very wide kinematic range, and up to

Dark bands:  
statistical uncertainties  

from extraction

Light bands:  
rough estimate of  

uncertainty due to collinear 
 function uncertainties  

(probably an overestimation)
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FIG. 10. 2� confidence regions centered around the minimum configuration, shown in green, for the fit of model IIB of IV in
the kinematic region of Eq. (21) and Eq. (22). Here the presence of some correlation among the free parameters controlling the
behavior of MD and gK is signalled by a slight deformation from the expected ellipsoidal shapes.
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FIG. 11. Extractions of the unpolarized TMD FF, Eq. (2),
from one-hadron production BELLE data of [13], using mod-
els IA,IB,IIA,IIB of Table IV, in the kinematic region of
Eq. (21) and Eq. (22). The TMD FF for the u ! ⇡+ + ⇡�

channel is shown in momentum space.

extremely high energies. Instead, in the small bT region,
our extraction of the CS kernel di↵ers from both PV19
and SV19 results, where the perturbative part of the CS
kernel is expected to dominate, making all bands to co-
incide.

This is mostly due to two factors. First, the behaviour
of our model for gK at small distances, which approaches
zero only as bpT, with 0 < p < 1, significantly more slowly
compared to the b

2
T behaviour of the PV19 and SV19

parametrizations also at small distances. In fact, the

e↵ects of our extractions for gK are still significant at
relatively small values of bT. Second, the approximations
of Eq. (2), are likely not optimal to describe the small
bT behaviour of the TMDFF. Future improvements in
the perturbative accuracy and a better treatment of the
thrust dependence could resolve these discrepancies with
respect to the results of the PV19 and SV19 analyses.
Recently, several lattice QCD calculations of the CS

kernel have been performed by di↵erent groups and re-
ported in Refs. [52–57]; it is therefore interesting to com-
pare our extraction to some of these computations. We
do this in Fig. 14, where for clarity we compare er-
ror bands of all our models with the most recent cal-
culation of each lattice QCD collaboration, Refs. [54–
57]. The logarithmic and sub-linear power large bT be-
haviour assumed for our extractions seem to be well sup-
ported by lattice QCD estimations of the CS kernel.
We note that while our results are in better agreement
with the SWZ21[56] and LPC22[57] calculations, the gen-
eral trend of our extractions is also consistent with the
ETMC/PKU[55] and SVZES[54] results, characterized
by a slow variation of the CS kernel at large bT. Once
again we underline that in our analysis little can be said
about the small bT behaviour of the CS kernel, thus we fo-
cused our attention in the large bT regime, where BELLE
experimental data o↵er good coverage.

III. CONCLUSIONS

We performed an analysis of recent BELLE data for
one hadron production in e

+
e
� annihilation [13] and

extracted the TMD FF following the newly developed
formalism of Ref. [25, 28, 29]. In this framework, the
short distance behavior of the TMD FF is constrained
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FIG. 10. 2� confidence regions centered around the minimum configuration, shown in green, for the fit of model IIB of IV in
the kinematic region of Eq. (21) and Eq. (22). Here the presence of some correlation among the free parameters controlling the
behavior of MD and gK is signalled by a slight deformation from the expected ellipsoidal shapes.
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extremely high energies. Instead, in the small bT region,
our extraction of the CS kernel di↵ers from both PV19
and SV19 results, where the perturbative part of the CS
kernel is expected to dominate, making all bands to co-
incide.

This is mostly due to two factors. First, the behaviour
of our model for gK at small distances, which approaches
zero only as bpT, with 0 < p < 1, significantly more slowly
compared to the b

2
T behaviour of the PV19 and SV19

parametrizations also at small distances. In fact, the

e↵ects of our extractions for gK are still significant at
relatively small values of bT. Second, the approximations
of Eq. (2), are likely not optimal to describe the small
bT behaviour of the TMDFF. Future improvements in
the perturbative accuracy and a better treatment of the
thrust dependence could resolve these discrepancies with
respect to the results of the PV19 and SV19 analyses.
Recently, several lattice QCD calculations of the CS

kernel have been performed by di↵erent groups and re-
ported in Refs. [52–57]; it is therefore interesting to com-
pare our extraction to some of these computations. We
do this in Fig. 14, where for clarity we compare er-
ror bands of all our models with the most recent cal-
culation of each lattice QCD collaboration, Refs. [54–
57]. The logarithmic and sub-linear power large bT be-
haviour assumed for our extractions seem to be well sup-
ported by lattice QCD estimations of the CS kernel.
We note that while our results are in better agreement
with the SWZ21[56] and LPC22[57] calculations, the gen-
eral trend of our extractions is also consistent with the
ETMC/PKU[55] and SVZES[54] results, characterized
by a slow variation of the CS kernel at large bT. Once
again we underline that in our analysis little can be said
about the small bT behaviour of the CS kernel, thus we fo-
cused our attention in the large bT regime, where BELLE
experimental data o↵er good coverage.

III. CONCLUSIONS

We performed an analysis of recent BELLE data for
one hadron production in e

+
e
� annihilation [13] and

extracted the TMD FF following the newly developed
formalism of Ref. [25, 28, 29]. In this framework, the
short distance behavior of the TMD FF is constrained
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FIG. 12. Extractions of MD and gK in Eq. (2) from e+e� ! hX BELLE data [13], in the kinematic region of Eq. (21) and
Eq. (22). In all cases, 2� statistical error bands are shown. For model IA they correspond to the region of parameter space of
Fig. 9 while for model IIB to Fig. 10. Left: MD according to model IA,IB,IIA,IIB of Table IV. Right: Corresponding results
for gK.

FIG. 13. Extractions of the CS kernel obtained in this analysis
with models IA, IB, IIA, IIB are compared the PV19 [4] and
SV19 [47] extractions. For clarity, central lines are not shown.
While there is a good agreement between the linear and sub-
linear large bT behaviour of this extraction and Ref. [47], the
result of Ref. [4] shows an evident deviation at large bT, where
gK goes like b4T. Discrepancies at small bT are due to the
higher pQCD accuracy of the PV19 and SV19 analyses. We
also note that our models are essentially di↵erent at small bT
compared to those used in Refs. [4, 47], as explained in the
text.

by collinear FFs, as in the standard CSS and SCET for-
malisms, while the long distance behaviour requires the
parametrization and determination, via comparison to
data, of two functions, MD and gK. We introduced con-
straints for these functions in the asymptotically large

FIG. 14. The CS-kernel obtained in this analysis by adopt-
ing models IA, IB, IIA, IIB are compared to the CS kernel
computed in lattice QCD in Refs. [54–57], at µ = 2 GeV. For
clarity, central lines for our extractions are not shown and we
display only the most recent lattice calculation for each group.
The logarithmic and sub-linear power large bT behaviour as-
sumed for our extraction seem to be well supported by lattice
QCD estimations of the CS kernel.

region of bT, consistently with previous theoretical re-
sults from Refs. [44, 48, 49, 58]. Our analysis is based
on a maximum-likelihood procedure, carried out by �

2-
minimization. Statistical errors are estimated by a stan-
dard determination of confidence regions at 2� level.

Upon testing how di↵erent choices of available collinear
FFs perform when comparing to data, we found that both
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