A Summary of ALP Production and Acceptance using MadGraph

Arka Santra July 21, 2022 LUXE NPOD Detector Meeting Weizmann Institute of Science, Israel

MadGraph mode

- Generate this process:
 - a nuc -> ax nuc where a is photon, nuc is the nucleus of the tungsten dump and ax is the ALP (a BSM pseudoscalar particle).
 - Used the Primakoff production mechanism.
 - The dump is stationary.
- The ALP production UFO model is based on ALPsEFT (linear).
- The nuclear form factor was obtained from Iftah Galon (from a muonic force model)
 - This was implemented in the above UFO model of ALPsEFT.

Primakoff production

diagram 1

NP=2, NUC=1, QCD=0, QED=0

MadGraph production

- The MadGraph generated output in the standard LHE file format.
 - Converted to root using ExRootConverter
- The root file contained these branches:
 - Particle four momentum, PDG, Status (incoming/outgoing), Event id, number of particles in the event etc.
- MadGraph does not smear the vertex position, so all "collisions" happen at z=0, t=0.
 - MadGraph decays ALP instantaneously so we have two photons in the final state at z=0,t=0.
 - The 2 photons are produced at z=0 and t=0
 - We need to displace them according to the ALP's lifetime for realistic acceptance calculation.

Acceptance Calculation: ALP decay volume

- Decay length is obtained using $L_A = c \tau_A p_A / m_A$.
 - τ_A is the decay time of ALP, p_A/m_A is the Lorentz factor.
- r_{vtx} : randomly drawing a number from exp(- L/L_A).
 - The direction is determined by the momentum of ALP.
 - ALP momentum is reconstructed by vector addition of two outgoing photons' four momenta.
 - Now we have \vec{r}_{vtx} .
- Once the \vec{r}_{vtr} is determined, photons are shifted to that position.
 - other wise the event is rejected.

• The distance of decay (r_{vtr}) for each ALP is obtained by randomly drawing a length from the decay length distribution of the ALP.

• If $|\vec{r}_{vtx}|\cos(\theta_{ALP})$ is more than the dump length ($L_S = 1.0m$) and less than ($L_S + L_D$), then we proceed to the next stage,

Acceptance Calculation: Detector area

- Once the \vec{r}_{vtx} is determined, and photons decay inside the decay volume
 - Given the opening angle of the photons at \vec{r}_{vtx} and the distance still needed to travel to detector, we check if the photons are caught by the detector or not.
- If both the photons are caught by the detector (and E_{γ} > 0.5 GeV), then that event is accepted.
 - If at least one photon has energy less than 0.5 GeV or/ and at least one photon is outside geometric acceptance, the event is rejected.
- Acceptance $\mathscr{A} =$ events with both photons passing the energy cut and geometric constraints divided by the total number of events generated.

Expected number of ALPs:

of ALP events:

•
$$N_{ALPs} \approx \mathscr{L}_{eff} \int dE_{\gamma} \frac{dN_{\gamma}}{dE_{\gamma}} \sigma_a(E_{\gamma}, Z) \left(e^{-\frac{L_D}{L_a}} - e^{-\frac{L_V + L_D}{L_a}} \right) \mathscr{A}, \longrightarrow \sigma_a(E_{\gamma}, Z)$$

efficiency of the detector.

•
$$\mathscr{L}_{eff} = N_e N_p \frac{9\rho_N X_0}{7A_N m_0}$$

- $N_{e} = 1.5 \times 10^{9}$ electrons/bunch
- $N_p = 10^7$ laser pulses a year
- ρ_N density of dump, for tungsten 19.3 g/cm³
- X_0 is the radiation length of tungsten (0.35 cm)
- A_N is the mass number of tungsten (184)
- m_0 is the atomic mass unit in gram: 1.661×10^{-24} g.
- The exponential factor in the above equation comes from the requirement that ALPs must decay after the dump and before the detector volume.
 - In simulation, we don't need that because we randomly draw the length propagated by ALP from its decay length distribution.
 - Therefore the exponential factor is absorbed in \mathscr{A} .
- Replacing the integral with summation: $N_{ALPs} = \sum \mathscr{L}_{eff} \times \mathscr{A}_i \times \sigma_i \times N_{\gamma,i}$
 - Sum over incoming photon beam energy distribution, $N_{\gamma,i}$ in bins of 0.1 GeV (distribution in next side).

• Once the geometric acceptance is obtained (A), the factor is multiplied by the effective luminosity (\mathscr{L}_{eff}) and the cross-section of production (σ) to get the number

Z) is the production xsec as a function of E_{γ} , \mathscr{A} is the angular acceptance times

Incoming photon beam energy distribution:

- Showing spectra per primary electron
 - "Primary" from the IP
 - "Secondary" produced inside the dump
- Photons per electron (phase-1)
 - ~3.5 photons with E_{γ} > 0.0 GeV
 - ~1.7 photons with E_{γ} > 0.5 GeV

phase0:

$$-\tau_{pulse} = 25 \text{ fs}$$
phase1:
 $-\tau_{pulse} = 120 \text{ fs}$
 $-w_0 = 6.5 \ \mu\text{m}$
 $-\xi = 2.4$
 $-N_{\gamma/e} < 1$ $-w_0 = 10 \ \mu\text{m}$
 $-\xi = 3.4$
 $-N_{\gamma/e} = 3.5 \text{ or } 1.7 \text{ if } E_{\gamma} > 1 \text{ GeV}$

LUXE ALP reach in parameter space:

- The exclusion contour is drawn where LUXE expects at least 3 ALP events.
- Result coming from phase 1 incoming photon distribution.
- Yotam Soreq obtained the result analytically, I got the same result using MadGraph simulation independently.

Some distributions from signal samples

Distance of photons from the z-axis:

★Cumulative distribution: more than 90% photons are captured by a detector with radius 1m
 ★This helps to determine the optimum detector radius.

More distributions:

 \star Photons opening theta

★Energy distributions of photons than 0.5 GeV.

\star They are only accepted if energy is more

 \star Energy of ALPs when photons are within acceptance of the detector (radius 1m)

More distributions: distance of two photons at the detector face

 \star Up to 2.0 m

\star Up to 0.2 m

Distribution of Decay Time of ALP and Photons Arrival Time at the Detector

- The length of the dump = 1.0 m
 - Position of the center of the dump = 1.0 m
 - Beginning of the dump = 0.5 m
 - End of the dump = 1.5 m
 - distance to the detector from the end of the dump: 2.5 m
- The t=0 ns is the time when incoming photon beam crosses the z=0 point.
 - Hence the collision of photon and dump happens at t = $0.5^*3.33 \text{ ns} = 1.66 \text{ ns}$
- Velocity of ALPs are calculated using $\beta = |\vec{p}_{ALP}|/E_{ALP}|$

Decay Time and Arrival Time at the Detector

Decay according to the ALP wid

 \star For the arrival time, only those events are considered where both the photons are within the detector geometric acceptance.

Detector has the radius of 1 m, present at z=4.0 m.

 \bigstar Time taken by the light to travel 4m ~ 13.3 ns.

 \star We trigger at t_0 (Eu.XFEL clock) and open a short time window Δt

 \star most signal (and bkg) photons will arrive within $\Delta t \simeq 0.5$ ns \star almost all bkg hadrons will arrive after that - need ~0.1 ns resoluti (see Noam's <u>talk</u>)

th •	Mass	1/lambda	Fraction upto 13.8 ns	Fraction up 14.3 ns
	130 MeV	10 ⁻⁴	0.99998	1.0
	200 MeV	10 ⁻⁵	0.99971	1.0
on	416 MeV	4×10^{-6}	0.99431	1.0

Summary:

- MadGraph was used to generate the ALP signal samples.
 - Subsequent simulation was done on the basis of the output file of MadGraph.
 - The result matches very well with the analytical calculation.
- The signal samples were used to check some properties of the signals •
 - Opening angle, time to arrive at the detector, distance of photons from the z-axis
 - These are important in order to finalize the detector radius, position and also background rejection.
- The scalar particles were also generated with MadGraph and they were found to have identical cross-sections/ acceptance as the pseudoscalar ALPs.
- Things to do:
 - Finalize the NPOD setup (decay volume, radius of the detector) •
 - Study the dump
 - Optimum dump design and material.
 - Realistic production vertex of ALP inside the dump (now it is at z=0). •
 - Secondary photon generation inside the dump.
 - Background particles depending on dump material.

MadGraph config files

import model ALP_linear_UFO_FF generate a nuc > ax nuc set automatic_html_opening False output NUCALP_beam1.0GeV_v2 launch NUCALP_beam1.0GeV_v2 set run_card ebeam1 1.0 set ebeam2 0 set lpp1 0 set lpp2 0 #### lepton cuts set ptl -1.0 set etal -1.0 set drll -1.0 #### photon cuts set pta -1.0 set etaa -1.0 set draa -1.0 set nevents 10000 set param_card mass 9000005 0.05 ### for tungsten set frblock 1 74 set frblock 2 183.8 set decay 9000005 Auto set alppars 1 4.000000e+04

• The time it takes a bkg photon to fly from $z_0 = 0$ to the calorimeter face at $z_1 = z_D + L_D/2 + L_V = 3.65$ m, is $t_1 = t_0 + (12 + \Delta t)$ ns • with $z_D = 1$ m, $L_D = 0.3$ m and $L_V = 2.5$ m and $t_0 = 0$ • We trigger at t_0 (Eu.XFEL clock) and open a short time window Δt most signal (and bkg) photons will arrive within $\Delta t \simeq 0.5$ ns $oldsymbol{O}$ $oldsymbol{O}$

- almost all bkg hadrons will arrive after that need ~0.1 ns resolution

From Noam Tal Hod, WIS

416:
~93
10
4

