Introduction to data analysis

DESY summer school 2022

Orel Gueta
DESY
August 4 & 5, 2022
Acknowledgements and further reading

A lot of inspiration taken from the following lectures:

- Louis Lyons - Practical Statistics for Physicists.
- Stephanie Hansmann-Menzemer - Modern Methods of Data Analysis.
- Andreas Hoecker - Foundations of statistics.
- Tommaso Dorigo - Statistics Topics for Data Analysis in Particle Physics: an Introduction.
- Kyle Cranmer - Practical Statistics for Particle Physics.
- Thomas Junk - Data Analysis and Statistical Methods in Experimental Particle Physics.

Books:

- Particle data group statistics review - concise, contains almost everything.
- Glen Cowan - Statistical data analysis.
- Trevor Hastie et al. - The Elements of Statistical Learning.
- J. VanderPlas et al. - Introduction to astroML: Machine learning for astrophysics
Alternative title could be “Practical statistics for physicists”

Four lectures

Lectures 1 & 2 - Introduction to data analysis (orel.gueta@desy.de).
Lecture 3 & 4 - Iftach Sadeh - Machine Learning Techniques.

Outline

Introduction
Probability and statistical distributions
Parameter and uncertainty estimation
Bayesian vs Frequentist
Hypothesis testing
Monte Carlo methods

* Slightly biased towards particle physics

Please feel free to stop me and ask questions!
Data analysis in physics involves a lot of probability and statistics.

> Quantum phenomena is probabilistic in nature.
> So is the particle interaction with the detector (e.g., air shower fluctuations).
> Theory only provides probabilities (e.g., Higgs decay channels).
> Analyze large amounts of data and compare to probabilities.
> Utilize Monte Carlo methods to simulate probabilistic phenomena.
Introduction

Where is data analysis used?

> Measure a known parameter and its uncertainty (mass of the Z boson).
> Discover new phenomena (Higgs, γ-ray/neutrino source).
> Test your theory against the data (hypothesis testing).

⇒ Extract as much as possible from data (experiments are expensive!)
Silly example
Simple example of data visualization.

- A restaurant owner orders 30 rolls every day.
- The law in the country states that rolls must weigh ~ 75 grams;
- After changing suppliers, the owner suspects that the new baker sells underweight rolls

\Rightarrow Investigate! Weigh the rolls (1 gram resolution).

| 78, 66, 67, 64, 74, 58, 78, 66, 71, 68, 77, 59, 68, 68, 75, 64, 69, 65, 70, 72 |
| 64, 75, 74, 72, 74, 66, 69, 65, 68, 72, 66, 68, 66, 65, 66, 69, 64, 71, 78, 73 |
| 69, 65, 66, 78, 70, 66, 70, 80, 70, 73, 71, 68, 64, 68, 68, 72, 74, 74, 71, 74 |
| 66, 76, 72, 68, 72, 69, 75, 77, 80, 63, 62, 67, 70, 74, 71, 59, 68, 74, 71, 73 |
| 68, 68, 70, 72, 70, 70, 66, 71, 70, 75, 75, 70, 68, 66, 72, 70, 68, 70, 66, 73 |
| 67, 76, 72, 72, 64, 70, 73, 65, 68, 63, 63, 71, 74, 65, 71, 63, 69, 61, 75, 72 |
| 69, 66, 76, 79, 60, 76, 78, 71, 64, 74, 69, 66, 63, 72, 73, 66, 72, 64, 74, 70 |
| 69, 69, 74, 73, 72, 70, 70, 73, 71, 73, 68, 57, 75, 80, 72, 69, 69, 70, 72, 64 |
| 67, 65, 71, 68, 72, 69, 74, 71, 80, 60, 66, 74, 82, 68, 70, 68, 76, 68, 73, 68 |
| 63, 71, 72, 76, 69, 66, 72, 71, 71, 69, 75, 71, 79, 75, 73, 61, 73, 72, 74, 75 |
| 67, 74, 67, 79, 63, 61, 61, 65, 64, 79, 68, 63, 75, 67, 63, 74, 73, 67, 77, 70 |
| 78, 72, 77, 70, 63, 82, 67, 69, 66, 68, 71, 71, 73, 78, 69, 63, 64, 66, 61, 74 |
| 67, 68, 69, 63, 65, 73, 73, 67, 79, 63, 68, 68, 56, 79, 71, 64, 80, 72, 72, 66 |
| 70, 62, 73, 68, 70, 76, 71, 71, 71, 66, 74, 77, 73, 74, 65, 65, 62, 76, 68, 76 |
| 66, 67, 70, 74, 70, 71, 70, 70, 64, 70, 69, 69, 72, 66, 69, 68, 72, 73, 65, 72 |

\Rightarrow Raw list of weights is not very useful.
A friend suggests to reduce the data,

> combine the measurements, taking into account resolution;

> assume the rolls are produced independently, e.g., neglect changes from week to week.

Can see that the majority of rolls weigh less than 75 grams.

> Easier to understand the data this way, but still far from perfect.

> Better idea to visualize the data?
Introduction - cheating baker

Visualize the data with a histogram,
> immediately grasp the distribution of weights;
> mean and standard deviation clearly visible.

> New baker definitely cheating, rolls are about 5 grams too light.
The owner complains to the baker.
The baker promises to correct his ways → The restaurant owner keeps monitoring.
The owner complains to the baker.

The baker promises to correct his ways — The restaurant owner keeps monitoring.

A month later the owner sees the baker is still cheating, sending him the heaviest rolls and selling the light ones to others.
Introduction - cheating baker

➤ The owner complains to the baker.
➤ The baker promises to correct his ways → The restaurant owner keeps monitoring.

➤ A month later the owner sees the baker is still cheating, sending him the heaviest rolls and selling the light ones to others.
Statistical distributions
Statistical distributions

Measurements typically follow a distribution, identifying it could be important:

- correct determination of parameters;
- uncertainties estimation;
- for results interpretation (see example later).

Binomial

\[P(k|p, N) \]

\[p = 0.2, \ N = 20 \]

\[p = 0.6, \ N = 20 \]

\[p = 0.6, \ N = 40 \]

Poisson

\[p(k|\mu) \]

\[\mu = 1 \]

\[\mu = 5 \]

\[\mu = 15 \]
Binomial distribution

Experiment has two outcomes,

For \(N \) “coins”, each with prob. of “success” \(p \),

\[
P(k; p, N) = \frac{k!}{k!(N-k)!} p^k (1 - p)^{N-k}
\]

is the prob. of \(k \) successes.

> What is the prob. to roll \(\square \) 34 times out of 100 throws?

> Selection or reconstruction efficiency (prob. to reconstruct 560 \(\gamma \)'s with \(p = 0.63 \) and \(N = 10^3 \)).
Binomial distribution

Characteristics,

> Expectation value (mean, \(\mu \)), \(E[k] = \sum_k kP(k) = Np \).

> Variance (\(\sigma^2 \)), \(E[(k - \langle k \rangle)^2] = E[k^2] - (E[k])^2 = Np(1 - p) \).

Intuitive, e.g., calculate for 8 coin flips.

Take into account when dealing with efficiencies

> ROOT includes various options to use binomial errors for efficiency (e.g., TEfficiency). Similar tools exist for R and Python.

Limiting cases,

> For \(N \to \infty, p \to 0 \)
 \(Np = \text{const.}, \)
 Binomial \(\to \) Poisson.

> For \(N \to \infty, p = \text{const.}, \)
 Binomial \(\to \) Gaussian.
Poisson distribution

Prob. of N independent events occurring in time interval Δt with constant rate μ,

$$P(N; \mu) = \frac{\mu^N}{N!} e^{-\mu}$$

$> $ Expectation value, $E[N] = \sum_N N P(N) = \mu$. Variance, $\sigma^2 = \mu$.

Where do we run into this dist.?
Poisson distribution

Prob. of N independent events occurring in time interval Δt with constant rate μ,

$$P(N; \mu) = \frac{\mu^N}{N!} e^{-\mu}$$

Expectation value, $E[N] = \sum_N NP(N) = \mu$. Variance, $\sigma^2 = \mu$.

Where do we run into this dist.?

- Number of decay events per second from a radioactive source;
Poisson distribution

Prob. of N independent events occurring in time interval Δt with constant rate μ,

$$P(N; \mu) = \frac{\mu^N}{N!} e^{-\mu}$$

> Expectation value, $E[N] = \sum_N NP(N) = \mu$. Variance, $\sigma^2 = \mu$.

Where do we run into this dist.?

> Number of decay events per second from a radioactive source;

> Number of “rare” interactions occurring per bunch crossing at LHC;

> Number events in a histogram bin.

→ typical, $N \pm \sqrt{N}$ (what about 0 ± 0?).

When $\mu \to \infty$, Poisson \to Gaussian.
Importance of distribution identification

Example - evidence of quarks in air showers.

> Researchers observed a track with 110 bubbles (average expected is 229, 55,000 tracks in total).
> They assumed (correctly) bubble formation is a Poisson-distributed quantity.
⇒ Probability of observation $P \sim 10^{-13}$.
⇒ Particles with fractional charge!

In fact,

> each scatter of a charged particle off a nucleus produces ~ 4 droplets.
⇒ Both particle scattering and bubble formation are Poisson processes.
⇒ Need to use a compound Poisson distribution.
> P to observe one 110 bubble track, $P \approx 5 \cdot 10^{-5}$;
> Observing one such track out of 55,000, $P \sim 92\%$.

EVIDENCE OF QUARKS IN AIR-SHOWER CORES

C. B. A. McCusker and I. Cairns
Cornell-Sydney University Astronomy Center, Physics Department, The University of Sydney, Sydney, Australia
(Received 3 September 1969)
Gaussian distribution

Probably the most common distribution (thanks to Central Limit Theorem),

\[
P(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}
\]

> **Expectation value,** \(E[x] = \mu.\)

> **Variance,** \(\sigma^2 = \sigma^2.\)

> **At** \(x = \mu \pm \sigma,\) \(y = y_{\text{max}}/\sqrt{e} \sim 0.606 \times y_{\text{max}}.\)

Probability content often used

> \(\int_{-\sigma}^{+\sigma} P(x; \mu, \sigma) \, dx = 68.2\%;\)

> \(\int_{-2\sigma}^{+2\sigma} P(x; \mu, \sigma) \, dx = 95.4\%\)

> etc.
Central Limit Theorem

Idea:

- pick \(k \) random variables from any distribution \(Q(x) \);
- repeat \(N \) times and calculate mean (or sum) between the variables;

\(\Rightarrow \) the distribution of the mean values will be Gaussian.

* \(Q(x) \) should be well defined.

Illustration:

- Uniform \(Q(x) \);
- Gaussian is shown for \(\mu = 0.5 \) and \(\sigma = 1/\sqrt{12N} \);
- Already for \(N = 10 \), Gaussian distribution observed.
- Larger \(N \) for non-uniform \(Q(x) \).
Central Limit Theorem

Idea:

- pick k random variables from any distribution $Q(x)$;
- repeat N times and calculate mean (or sum) between the variables;
- the distribution of the mean values will be Gaussian.

* $Q(x)$ should be well defined.

Illustration:

- Parabolic $Q(x)$;
- Gaussian is shown for $\mu = 0.75$ and $\sigma = \sigma(N)/\sqrt{N}$;
- Requires $N = 20$ to obtain Gaussian distribution.
- Try it yourselves!
A few extra comments on distributions

Other characteristics,

- Mode (most-probable value)
- Median (or more generally k-quantiles)

Symmetric

![Symmetric Distribution Graph]

Non-symmetric

![Non-symmetric Distribution Graph]

Have not mentioned so far,

- continuous or discrete distributions;
- cumulative distributions.
Parameter and uncertainty estimation
Parameter estimation - least square fit

Data: \(x_i, y_i \pm \sigma \), Theory: \(y = ax + b \).

- Parameter determination.
- Goodness of fit.

Least square fit

\[
\chi^2 = \sum_i \left(\frac{(ax_i + b) - y_i}{\sigma} \right)^2
\]

* not really \(\chi^2 \) (convention).

- Linear \(\Rightarrow \) minimize analytically

\[
a = \frac{\sum_i (x_i - \langle x \rangle)(y_i - \langle y \rangle)}{\sum_i (x_i - \langle x \rangle)^2}
\]

\[
b = \langle y \rangle - a \langle x \rangle
\]

* When \(\sigma \rightarrow \sigma_i \), perform numerically, assuming normally distributed uncertainties.

Uncertainties

- with enough data, \(\chi^2 \) usually parabolic;

\[
\sigma^2_\theta = \frac{2}{d^2 \chi^2 / d \theta^2}
\]

- scan parameter space for

\[
\chi^2(\theta) = \chi^2_{\text{min}}(\theta_{\text{best}}) + 1;
\]
Uncertainties

Suppose result/theory = 0.970, does the theory describe the data?
Uncertainties

Suppose result/theory = 0.970, does the theory describe the data?

\[
0.970 \pm 0.05 \quad 0.970 \pm 0.005 \quad 0.970 \pm 0.5
\]
Suppose result/theory = 0.970, does the theory describe the data?

0.970 ± 0.05 0.970 ± 0.005 0.970 ± 0.5

Statistical uncertainties

> Random in nature.
> Fluctuates independently per measurement.
> Unavoidable.
> Usually, more data → lower uncertainty (∝ √N).
> e.g., counting statistics, electronic noise, etc.

Systematic uncertainties

> Usually originate in the instrument.
> Bias the data by unknown \(\sim \) constant offset.
> Hard to detect, correct for, estimate.
> e.g., miscalibration, diff. between data and simulation, simulation statistics, etc.

\[\sigma (\text{tot.}) = \sigma (\text{stat.}) \oplus \sigma (\text{syst.}) \]

> Report uncertainties separately (sometimes diff. syst. contributions).
> Pick your battles.
> Take into account theoretical uncertainty.
Uncertainty propagation

Assume \(y = f(x) \) ⇒ \(\sigma_y = \left. \frac{df(x)}{dx} \right|_{x=\bar{x}} \cdot \sigma_x \)

- Taylor expansion approximation, small uncertainty.

With more variables, \(f(x_1, x_2, \ldots, x_N) \), take correlation into account

\[
\sigma_y^2 = \sum_{i,j}^N \left. \frac{\partial f}{\partial x_i} \frac{\partial f}{\partial x_j} \right|_{x=\bar{x}} \cdot V_{x_i,x_j}
\]

- \(V_{x_i,x_j} \) is the covariance of \(x_i, x_j \) (see later).
- Correlated variables lead to increased uncertainty.
- Opposite for anti-correlated.

examples

- \(y = x_1 - x_2 \) ⇒ \(\sigma_y^2 = \sigma_{x_1}^2 + \sigma_{x_2}^2 - 2 \cdot V_{x_1,x_2} \).
- \(y = x_1^\alpha \cdot x_2^\beta \), fractional uncertainties are useful (uncorr.)
 \(\Rightarrow \left(\frac{\sigma_y}{y} \right)^2 = \left(\alpha \frac{\sigma_{x_1}}{x_1} \right)^2 + \left(\beta \frac{\sigma_{x_2}}{x_2} \right)^2 \).
- Sometimes easier numerically (uncorr.)
 \(y_1 = f(x_1 + \sigma_{x_1}, x_2, \ldots, x_N), \ y_2 = f(x_1, x_2 + \sigma_{x_2}, \ldots, x_N), \) etc.
 \(\sigma_y^2 = (y - y_1)^2 + (y - y_2)^2 + \ldots + (y - y_N)^2 \).
Quick examples - LS

Calibrate detectors

$E_\gamma = \alpha_1 \cdot E_{AERO_1} + \alpha_2 \cdot E_{AERO_2} + \alpha_3 \cdot E_{PCAL}$

> obtain E_γ from beam energy and other calibrated detector.

> for all data available, minimize

$$\chi^2 = \sum_{n=1}^{N} \left(\sum_{j=1}^{3} \alpha_j E_{j,n} - E_\gamma^n \right)^2 \sigma_{E_\gamma}^2$$

Orel Gueta | DESY | August 4 & 5, 2022 | Page 22
Quick examples - LS

Estimate contributions from signal/background,

> minimize to get optimal relative fractions

\[D = (1 - f)\mathcal{H}_1 + f\mathcal{H}_2 \]

> both model and data are binned and have uncertainties

⇒ can only be done numerically (ROOT, Minuit).

\[0.0 \leq \xi_{sDPS} < 0.1 \]

ATLAS
\[\sqrt{s} = 7 \text{ TeV}, 37 \text{ pb}^{-1} \]

- Data 2010
- SPS (AHJ)
- cDPS (data, overlay)
- sDPS (data, overlay)
- Fit distribution (stat. uncertainty)
- Fit distribution (stat. + sys. uncertainty)

Anti-\(k_T\) jets, \(R = 0.6\)

\[p_T^1 \geq 42.5 \text{ GeV} \]
\[p_T^{2,3,4} \geq 20 \text{ GeV} \]
\[|\eta_{1,2,3,4}| \leq 4.4 \]
Goodness of fit

In the least squares case, straightforward
> determine χ^2_{min} and number of degrees of freedom, $\nu = n - p$;
> check probability based on χ^2 distribution (TMath::Prob(chi2, ndf)).
* usually referred to as p-value, prob. to find $\chi^2 > \chi^2_{\text{min}}$ (see later)
> Rule of thumb, $\chi^2_{\text{dof}} \approx \chi^2 / \nu \approx 1$.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{chi2}
\caption{χ^2 probability density function and cumulative distribution function.}
\end{figure}
Quick example - goodness of fit

Check if brightness of star varies with time

- **Correct errors**
 - \(\hat{\mu} = 9.99 \), \(\chi^2_{dof} = 0.96 \ (0.2 \sigma) \)

- **Overestimated errors**
 - \(\hat{\mu} = 9.99 \), \(\chi^2_{dof} = 0.24 \ (3.8 \sigma) \)

- **Underestimated errors**
 - \(\hat{\mu} = 9.99 \), \(\chi^2_{dof} = 3.84 \ (14 \sigma) \)

- **Incorrect model**
 - \(\hat{\mu} = 10.16 \), \(\chi^2_{dof} = 2.85 \ (9.1 \sigma) \)
Kolmogorov–Smirnov test

Test if distributions originate from the same underlying PDF.

> Search for largest difference between cumulative distributions.
> Useful with small amounts of data (can be used as goodness of fit).
> Fast, non-parametric, sensitive to differences in location and shape of cumulative distributions.
> Example - automatic testing of simulation output distributions.

* χ^2 also available
Probability: Bayesian vs Frequentist
Brief intro to probability

Axioms (Kolmogorov):
1. $P(A) \in \mathbb{R}$, $P(A) \geq 0$, $\forall A \in \Omega$ (Ω is the event space).
2. $\int_{\Omega} P(A) dA = 1$, i.e., Unitarity, prob. that at least one event will occur is 1.
3. If $P(A \cap B) = 0$, then $P(A \cup B) = P(A) + P(B)$.

Conditional probability:
$P(A|B) = \frac{P(A \cap B)}{P(B)}$

Frequentist
- How likely is an event to occur, based on many repeatable trials.
- Not applicable to a single event.
- Objective statement.

\[P(A) = \lim_{n_{\text{trials}} \to \infty} \frac{n_A}{n_{\text{trials}}} \]

Bayesian
- A “degree of belief” that an event will happen.
- Includes previous knowledge in it (prior).

Bayes theorem - $P(A|B) = \frac{P(B|A) P(A)}{P(B)}$
Bayesian vs Frequentist

Frequentist

⇒ Probability of data given a model, \(P(\text{data}|\text{model}) \).

∗ “Frequentist statistics gives the probability to observe data under a given hypothesis, it says nothing about the probability of the hypothesis to be true”.

Bayesian

⇒ Probability of model given data, \(P(\text{model}|\text{data}) \).

\[
P(\text{model}|\text{data}) \propto P(\text{data}|\text{model}) \times P(\text{model}) \leftarrow \text{prior}.
\]

→ could be previous measurements;
→ might be subjective;
→ functional form not always known (necessary?);
→ what if there is no knowledge?

Prior examples

> Physics is “smooth”.
> mass squared of neutrino.
> “extraordinary claims require extraordinary evidence”.

Orel Gueta | DESY | August 4 & 5, 2022 | Page 28
Covariance and correlation
Covariance and correlation

Consider measurements depending on more than one variable (observable).

> What is prob. for A and B?
> \[P(A) = \int f(x) \, dx, \quad P(B) = \int f(y) \, dy \Rightarrow P(A \cap B) = \int \int f(x, y) \, dx \, dy. \]
> The joint prob. \(f(x, y) \) corresponds to the density of points \((N \to \infty) \).
> If not interested in \(y \) dependence, project.

* Profiling (see later)
Covariance and correlation

How correlated are \(x \) and \(y \)?

\[\Rightarrow \text{Covariance} \]

\[\Rightarrow \text{Following the definition of 1D variance,} \]

\[V(x) = \sigma_x^2 = E[(x - \langle x \rangle)^2] = E[x^2] - (E[x])^2; \]

\[C(x, y) = V_{x,y} = E[(x - \langle x \rangle)(y - \langle y \rangle)] = E[xy] - E[x]E[y]. \]

If \(x \) and \(y \) uncorrelated,

\[P(A \cap B) = P(A) \cdot P(B). \]

\[f(x, y) = f(x) \cdot f(y). \]

Remember uncertainty propagation?

with \(y = f(x) \)

\[\sigma_y^2 = \sum_{i,j}^N \frac{\partial f}{\partial x_i} \frac{\partial f}{\partial x_j} \bigg|_{x=\bar{x}} \cdot V_{x_i,x_j} \]

notice \(C = V_{x_i,x_j} \) is covariance matrix.
Covariance and correlation

The dimensionless Pearson's correlation coefficient

\[\rho_{x,y} = \frac{C(x, y)}{\sigma_x \sigma_y} \]

- does not measure slope.

- Test **linear** correlation/anti-correlation. Always plot your data!
Example - 2D Gaussian

\[P(\vec{x}) = \frac{1}{2\pi \sqrt{\det(C)}} \exp \left(-\frac{1}{2} (\vec{x} - \vec{\mu})^T C^{-1} (\vec{x} - \vec{\mu}) \right) \]

for \(\vec{x} = (x, y) \Rightarrow C = \begin{pmatrix} \sigma^2_x & \rho \sigma_x \sigma_y \\ \rho \sigma_x \sigma_y & \sigma^2_y \end{pmatrix} = \begin{pmatrix} \sigma^2_x & V_{x,y} \\ V_{x,y} & \sigma^2_y \end{pmatrix} \]
Covariance and correlation

How to deal with correlated variables?

- If one of the variables is not used or cannot measure → project.
- Bin the data (profiling), issues with this method?

> Variable transformation.
Principal component analysis

Perform orthogonal linear transformation, each component (variable) maximizes variance.
Process (X is data matrix),

> diagonalize the $X^T X$ matrix, calculate eigenvectors and eigenvalues;
> the (ordered) eigenvectors are the new observables;
> the variance “score” is given by the eigenvalues.

Some comments

> Covariance, $C \propto X^T X$.
> First n components embody majority of information.
⇒ Can be used to reduce dimensionality.
> Often one of the first steps in multi-variate analysis.
> Useful only for linearly correlated variables (non-linear options available).
> Various tools available (ROOT, scikit-learn, R).
Hypothesis testing
Parameter estimation - Maximum likelihood

Maximum likelihood for parameter determination.

> Assume we observe N independent events, y_i.
> The hypothesis to check has a PDF, $p(y, \theta)$, where θ is param.
> Events are independent, combine prob as $\mathcal{L}(\theta) = \prod_{i}^{N} p(y_i, \theta)$.

→ calculate $\mathcal{L}(\theta)$ for all θ values (fixed y_i).
> $\mathcal{L}(\theta)$ is at maximum when $\theta = \theta_{\text{true}}$.

![Graphs showing log likelihood](image)
Maximum likelihood

Conventional to instead minimise $-2 \cdot \ln \mathcal{L}(\theta)$

$$\ln \mathcal{L}(\theta) = \sum_i^N p(y_i, \theta) \text{ (numerically easier)}.$$

Confidence interval

$$\ln \mathcal{L}(\theta_0 \pm \sigma) = \ln \mathcal{L}(\theta_0) - 1/2 \quad \text{(also } \frac{d^2 \ln \mathcal{L}(\theta)}{d\theta^2} \text{).}$$

For $-2 \cdot \ln \mathcal{L}(\theta) \to -2 \cdot \Delta \ln \mathcal{L}(\theta) = 1$.

When $\mathcal{L}(\theta)$ is \simGaussian

$$\Rightarrow \text{ confidence interval of } \sim 68\% \text{ for } \theta.$$

$$\Rightarrow \text{ could be asymmetric.}$$

If $\mathcal{L}(\theta)$ “very” non-Gaussian

$$\Rightarrow \text{ revert to Neyman confidence interval (will not cover).}$$

Goodness of fit

$$\Rightarrow \text{ Not straightforward, at large } N$$

$$-2 \cdot \Delta \ln \mathcal{L}(\theta) \to \chi^2$$

(Wilks’ theorem).

$$\Rightarrow \text{ Toy Monte Carlo.}$$
Quick example - MLE

Lifetime determination (L. Lyons)

> Radioactive decay, $\frac{dn}{dt} = \frac{1}{\tau} e^{-\frac{t}{\tau}}$; (normalization, $\frac{1}{\tau}$).

> Observed decays $t_i = t_1, t_2, \ldots, t_N$.

* neglecting background, time smearing, etc.

Construct likelihood

> $\mathcal{L}(\tau) = \prod_i^n \left(\frac{dn}{dt} \right)_i = \prod_i^n \frac{1}{\tau} e^{-\frac{t_i}{\tau}}$.

> $\ln \mathcal{L}(\tau) = \sum_i^n \left(-\frac{t_i}{\tau} - \ln \tau \right)$.

> $\frac{d\ln \mathcal{L}(\tau)}{d\tau} = \sum_i^n \left(\frac{t_i}{\tau^2} - \frac{1}{\tau} \right) = 0$.

$\Rightarrow \tau = \sum_i^n \frac{t_i}{N} = \langle t_i \rangle$.

Uncertainty estimation

> $\frac{d^2 \ln \mathcal{L}(\tau)}{d\tau^2} = -\sum_i^n \left(\frac{2t_i}{\tau^3} + \frac{1}{\tau^2} \right) = 0$.

$\Rightarrow \sigma_\tau = \frac{\tau}{\sqrt{N}}$ (notice $\frac{1}{\sqrt{N}}$ dependency).
Hypothesis testing

Use likelihood for hypothesis testing, often formulated as

- Null hypothesis, H_0, (e.g., Standard Model only).
- Alternative hypothesis, H_1 (e.g., Standard Model + new physics).

Simple hypothesis

- Calculate $L(H_0(\theta))$
 - decide if data is likely for H_0 (p-value).
 - If not, claim discovery (of what?)
 - Existence of a particle (Higgs, new particle)
 - A new γ-ray source.

Composite hypothesis

- compare $L(H_0(\theta))$ and $L(H_1(\theta))$.
 - Usually likelihood ratio is used.
 - More sensitive to H_1.
 - Based on p-values, which H_i is more likely.
 - Particle with certain mass, width, coupling constants.
 - Position and spectra of γ-ray source.
Hypothesis testing - exclude H_0

Types of errors:

- False positive (Type-1 error): wrongly reject H_0 (no new physics).
- False negative (Type-2 error): wrongly accept H_0 (missed new physics in data).

<table>
<thead>
<tr>
<th>Our Decision</th>
<th>True State of Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not reject H_0</td>
<td>H_0 is true, Correct decision</td>
</tr>
<tr>
<td>Reject H_0</td>
<td>H_0 is false, Type II error</td>
</tr>
</tbody>
</table>

Define the probabilities

- Type-1 error rate (significance α)
 \[
 \alpha = \int_{x \geq x_0} p(x|H_0) \, dx
 \]
 i.e., probability of the data given H_0 (familiar?).

→ relation to p-value in next slides.
Gaussian example

> Assume PDF is Gaussian distributed around μ_0 and we measure μ.
> The p-value is the probability to measure μ or higher.
> α is the probability to measure C' or higher.
> Compare p-value to α, decide to accept/exclude H_0.

> One-sided p-value (or α) at $5\sigma = 3 \cdot 10^{-7}$.
> Sometimes both tails need to be taken into account ($\alpha/2$).

* See relation to goodness of fit?
p-value

p-values not only for Gaussian distributions

\begin{align*}
\text{Convention} \\
\quad > \text{Convert } p\text{-value from any PDF to equivalent one-sided Gaussian } \sigma. \\
\quad > \text{Does not mean PDF is Gaussian, simply easier to remember.} \\
\quad > p\text{-value is } P(\text{data}|H_0), \text{ it is not } P(H_0|\text{data}).
\end{align*}
Hypothesis testing

For comparing H_0 & H_1, **Neyman-Pearson Lemma**

⇒ Likelihood ratio test is optimal discriminant (assuming no free parameters).

> Log Likelihood ratio $\ell = -2 \ln \left(\frac{L(data, H_1)}{L(data, H_0)} \right)$.

> If $H_i(\theta)$, use simulation to generate distributions of ℓ for H_i.

> Take measurement and calculate ℓ after maximizing L for both $H_i(\theta)$.

> Calculate both p-values, decide which H_i to accept.

*\quad More complicated in reality.
Exclusion limit (simplified)

Assume $H_0 = \text{background (SM)}$ and $H_1 = \text{background + signal}$.

> Number of events (cross-section) observed is Poisson distributed.
> From p-values, accept H_0.

Set limit

> Find the maximum signal strength for which $p(H_1) < 5\%$.
> Set limit on signal at 95% confidence level (exclusion, 2σ).

* Usually based on the likelihood ratio test statistics.
Higgs discovery

- Visible bump in the data.
- For $H \rightarrow \gamma\gamma$, background fitted with a smooth distribution.
- Complicated background in $H \rightarrow 4\ell$.
Discovery/Exclusion

> **local** p-value of observed Higgs signal (signal stronger than expected).
> Search for massive scalar decaying to two γ, not found

\Rightarrow set an upper limit on the cross-section (\times branching ratio).

Graphical Data

- **ATLAS**
- **Observed** p_0 vs m_H [GeV]
- **SM H → γγ** expected p_0
- **Obs. 2011** $\sqrt{s} = 7$ TeV, $Ldt = 4.8$ fb$^{-1}$
- **Exp. 2011**
- **Obs. 2012** $\sqrt{s} = 8$ TeV, $Ldt = 20.7$ fb$^{-1}$
- **Exp. 2012**

95% CL Upper Limit on $\sigma_{id} \times BR$ [fb]

- **Observed CL_s limit**
- **Expected CL_s limit**
- **Expected ± 1σ**
- **Expected ± 2σ**

ATLAS Preliminary

$\sqrt{s} = 13$ TeV, 15.4 fb$^{-1}$
Spin-0 Selection
$\Gamma_X/m_X = 10\%$
Use likelihood ratio $q = \frac{-2 \ln \left(\frac{\mathcal{L}(\text{data}, 0^+)}{\mathcal{L}(\text{data}, 0^-)} \right)}{\ln(2)}$ to determine Higgs spin.
Look elsewhere effect

Bump hunting? Peaks can be anywhere!

> Increase \(p \)-value to take into account (quote local and global \(p \)-value).
> Correction roughly width mass interval divided by width particle.
> Confirmation from other experiment is crucial.

* Consider amount of searches at any given time.

* Remember the track with 110 bubbles?
Look elsewhere effect

Also in searches for γ-ray sources

* Usually referred to as trials factor.

> Include also cuts in the correction (not always easy).
Blind analysis

The first principle is that you must not fool yourself — and you are the easiest person to fool

Whenever possible, perform blind analysis

> Keep the “signal box” closed.

> Construct and refine analysis on simulation, cannot change after unblinding.

> Use only part of the data available.
Blind analysis

R. Feynman

The first principle is that you must not fool yourself — and you are the easiest person to fool

Whenever possible, perform blind analysis

> Keep the “signal box” closed.

> Construct and refine analysis on simulation, cannot change after unblinding.

> Use only part of the data available.

> Add random numbers to results.

> Use fake signal to test procedure (done at LIGO).
The 5σ criteria

Probability of fluctuation of 5σ is less than 1 in a million, tiny!

\succ This was not always the case (and is not in other fields).

\succ A lot more data these days.

\succ Sometimes hard to estimate look elsewhere effect.

\succ Underestimated systematic uncertainties?

\succ A discovery of new physics will be a game changer, better not take it back.

Bayesian prior

(extraordinary claims require extraordinary evidence)
Monte Carlo methods
Monte Carlo methods

Wikipedia: “computational algorithms that rely on repeated random sampling to obtain numerical results.”

Useful for, e.g.,

> Numerical integration.
> Simulating particle interactions or decay.
> Uncertainty estimation.

Example: estimate π

```python
from random import random
from math import sqrt, pi
inside=0
n=10000000
i_print = [1, 10, 100, 1000, 10000, 100000, 1000000]
for i in range(0,n+1):
x=random()
y=random()
    if sqrt(x**2+y**2)<=1:
        inside+=1
    if i in i_print:
        piNow=inside/i
        print ('pi(i=%d) = %.4f, error = %.4f' % (i, piNow, abs(piNow - pi)))
```

<table>
<thead>
<tr>
<th>i</th>
<th>π</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.0000</td>
<td>0.8584</td>
</tr>
<tr>
<td>10</td>
<td>3.6000</td>
<td>0.4584</td>
</tr>
<tr>
<td>100</td>
<td>3.3600</td>
<td>0.2184</td>
</tr>
<tr>
<td>1000</td>
<td>3.1240</td>
<td>0.0176</td>
</tr>
<tr>
<td>10000</td>
<td>3.1264</td>
<td>0.0152</td>
</tr>
<tr>
<td>100000</td>
<td>3.1433</td>
<td>0.0017</td>
</tr>
<tr>
<td>1000000</td>
<td>3.1402</td>
<td>0.0014</td>
</tr>
</tbody>
</table>
Monte Carlo integration

Simple numerical integration

- Divide range to small pieces of known area and sum.
- Suffers from curse of dimensionality, $N_{\text{calc}} = n^d$.

Similar to π estimate example, can sample function at random points.

- Avoids curse of dimensionality of numerical integration, error $\propto 1/\sqrt{N}$.
- Works for any function (including discontinuous ones).
- Faster at large d.
- Used in e.g., phase-space integration of matrix elements.
Bootstrap method

Assume N measurements of x, x_i, how to estimate $\mu_x \pm \sigma_{\mu_x}$?
Not easy to estimate σ_{μ_x} without knowing PDF of x.

\Rightarrow Usually there is no access to the “true” PDF.
\Rightarrow The distribution of x_i is best approximation of it.
Bootstrap method

- Can generate “new” measurements by sampling from x_i.
- Each iteration sample events from the 1000 measurements, allowing repetition.
- Calculate μ_x for “new” distribution.
Bootstrap method

> Obtain a distribution of μ_x by repeating 50,000 times.
> For comparison, perform 50,000 experiments using true PDF, each with 1000 events.

$\Rightarrow \sigma_{\mu_x}$ from bootstrap reproduces that from independent experiments.

* Toy MC
* Can be used in numerical estimation of uncertainties
Bootstrap method

While making the plots, encountered interesting case,

> In 1st trial, saw a bias between μ_x distributions (not significant, but still).
> Spread was OK \rightarrow test by changing random seed when performing first “measurement” of 1000 events.
> With different random seed, no more bias and same σ_{μ_x}.

![Two samples of 1000 measurements](image1.png)

![Different orig. random distribution for bootstrap](image2.png)
Event classification

Significant part of data analysis, classifying between events.

> Define decision boundaries (cuts).
> Requires prior information (usually from simulation).
> Can it be done “visually”? Usually too many observables/classes.
Event classification

Various ways to deal with it (see 3rd lecture about machine learning)

> If observables not highly correlated, can define cuts in bins.

> Many algorithms available to optimize cuts (e.g., linear discriminant analysis, kNN, SVM, BDT, ANN).

→ LDA is similar to Principal Component Analysis, but it maximizes separability between event classes.

→ Maximizes distance between means and minimizes overlap.

→ Can be used to reduce dimensionality and optimize cut hyperplane.
Event classification

> Use data with known labels to train discriminant, apply later to “real” data.
> Can expand space to $5d = X_1, X_2, X_1 \cdot X_2, X_1^2, X_2^2$ to obtain non-linear hyperplanes using linear method.

- Transformed observables useful also for non-linear methods (e.g., $\log E$).
- Take care when using “automatic” classifiers, study results carefully.
- Consider systematic uncertainties when selecting observables.
Miscellaneous
Unfolding

What is unfolding?

The process of correcting the data for detector effects

A measured distribution is affected by

> Inefficiencies in the detector → lost events.
> Bias → if $\langle x \rangle$ is true mean, measure $\langle x' \rangle = \langle x \rangle + \Delta x$.
> Smearing → the detector has finite resolution.

Simple example,

> known efficiency function.
> no bias or smearing.
⇒ correct each bin for fractional loss of events.

* Not really unfolding
Unfolding

In practice, given a measured histogram y^{data}, we want to obtain “true” distribution x^{data}, where $y^{\text{data}} = R^{\text{data}} \cdot x^{\text{data}}$.

The matrix R_{ij}^{data} is the response function of the detector.

Inefficiencies contribute to diagonal elements → per-bin correction;

bias and smearing to off-diagonal → bin migration.

How to derive R^{data}?

In simulation we have all necessary information.

$y^{\text{MC}} = R^{\text{MC}} \cdot x^{\text{MC}}$, where R^{MC} is our detector simulation.

Assume $R^{\text{data}} = R^{\text{MC}} = R$.

Notice that in general,

$y^{\text{data}} \neq y^{\text{MC}}$,

$x^{\text{data}} \neq x^{\text{MC}}$,

but should be close.

Can we then simply use $x^{\text{data}} = R^{-1} \cdot y^{\text{data}}$?
Unfolding is an ill-posed problem

⇒ With finite statistics, naive unfolding fails.

⇒ Leads to significant statistical fluctuations between bins.

→ Negative correlation coefficients between adjacent bins.

→ Positive coefficients between next-to-nearest neighbours.

How to deal with fluctuations?

Regularization

⇒ Increase weight of “smoother” solutions, damp oscillations.

⇒ Unfold iteratively using Bayes theorem (will not cover).

* Various tools available, e.g., RooUnfold.
Unfolding

Regularized unfolding

The unfolding problem can be written as a minimization of (simplified)

\[
\chi^2(x^\text{data}) = (R \cdot x^\text{data} - y^\text{data})^T (R \cdot x^\text{data} - y^\text{data}) + \tau (Lx^\text{data})^T (Lx^\text{data})
\]

L is regularization matrix (second derivative commonly used).
Second term dampens oscillations.

\[
\begin{align*}
\tau \text{ is regularization parameter,} & \\
* \text{ if } \tau \text{ is too small } \rightarrow \text{ oscillations;} & \\
* \text{ if } \tau \text{ is too large } \rightarrow x^\text{data} \text{ too smooth } & \\
& \text{ and biased towards } x^\text{MC}; \\
\text{ Depends on number of events and binning.} & \\
\text{ Some trial & error to choose } \tau. & \\
\text{ Usually chosen using (independent) } & \\
\text{ MC samples.} &
\end{align*}
\]
Unfolding

Over-regularized

- Data reco
- Unfolded data
- Data true
- MC true
- MC reco

\[K_{\text{reg}} = 3 \]

Correctly-regularized

- Data reco
- Unfolded data
- Data true
- MC true
- MC reco

\[K_{\text{reg}} = 10 \]

Under-regularized

- Data reco
- Unfolded data
- Data true
- MC true
- MC reco

\[K_{\text{reg}} = 38 \]

* Notice, \[y^{\text{data}} \neq y^{\text{MC}} \], \[x^{\text{data}} \neq x^{\text{MC}} \]

Why do we bother?

> Allows to compare directly to theoretical models and among experiments.
> “Future proof” the data.
Unfolding vs folding

Folding (or forward folding) is another option

> Instead of correcting data, publish it with corresponding R.
> The problem is then technically simpler,

$$
\chi^2(x^{\text{theo}}(\theta)) = (R \cdot x^{\text{theo}}(\theta) - y^{\text{data}})^T (R \cdot x^{\text{theo}}(\theta) - y^{\text{data}}),
$$

in the case where $x^{\text{theo}}(\theta)$ is the model one wants to test.
> Avoids unfolding issues (ill-defined problem, converting statistical uncertainties to systematic ones).

Issues with folding

> Does not allow comparison between experiments.
> Harder to test your model against data from various experiments.

What to do?

When possible, unfold.
Extended MLE

The production rate depends on mass of a particle, need to estimate both?

> Extended MLE (Poisson process, PDF $f(x_i; \theta)$)

$$L(x; \nu, \theta) = \frac{\nu^N}{N!} e^{-\nu} \prod_i f(x_i; \theta)$$

maximize with respect to both θ and ν (profile likelihood).

> Improved precision of fitted parameters obtained if θ and ν are correlated (e.g., $\theta =$ particle mass).

Nice example in Data Analysis in High Energy Physics book

> PDF, $f(x_i; \mu) = \mathcal{G}(\mu)$.

> Parameter of interest is μ.

> Assume $\nu = 9e^{-4(\mu - 7)}$.

> Simulate events with $\mu_{\text{true}} = 7$.

> Perform profile likelihood to obtain more precise $\hat{\mu}$.
Extended MLE and nuisance parameters

Can be used to include uncertainties in likelihood fit

> Assume signal and background contributions S and B.

> Try to estimate S, include Gaussian uncertainty on background $B \rightarrow \theta B$,

$$
\mathcal{L}(N; S, \theta) = \frac{(S+\theta B)^N}{N!} e^{-(S+\theta B)} G(\theta - 1, \sigma_\theta)
$$

> Background is constrained to our best guess ($\theta = 1$), with a σ_θ spread.

> Maximize \mathcal{L} to estimate S while marginalizing θ.

In reality can become complex

> Estimate various parameters of S and B simultaneously (e.g., particle mass).

> S and B affected by various uncertainties (many nuisance parameters).

> Divide data to various regions where different uncertainties contribute.

* Use tools to build models and perform fit, e.g., RooFit, ctools, Gammapy.
Statistics is everywhere in physics

> Lectures can get a bit abstract → learn by doing.
> Likely that your problem was solved already somewhere else, consult books and the web before reinventing the wheel.
> Use software packages as much as possible (ROOT, RooFit, various Python tools, etc.)

Subjects not covered but worth reading about

> Confidence intervals, coverage and limit setting.
> Dealing with systematic and theory uncertainties.
> Estimating contributions through templates and control regions.
> Combining results.
> Many more.

e-mail: orel.gueta@desy.de