Saturation at HERA and LHC

Short review of saturation and multiple scattering at HERA,

CMS correlation as a signal of saturation?

H. Kowalski, Analysis Center, 1 of November 2010

Partons vs Dipoles

Infinite momentum frame: Partons

 F_2 measures parton density at a scale Q^2

$$F_2 = \Sigma_f \ e_f^2 \ xq(x, Q^2)$$

Proton rest frame: Dipoles - long living quark pair interacts with the gluons of the proton dipole life time $\approx 1/(m_p x)$ = 10 - 1000 fm at $x = 10^{-2} - 10^{-4}$

$$\sigma_{tot}^{\gamma^* p} = \int \Psi^* \sigma_{qq} \Psi ; \qquad F_2 = \frac{Q^2}{4\pi^2 \alpha_{em}} \sigma_{tot}^{\gamma^* p}$$

for small dipoles, at low-x, dipole picture is equivalent to the QCD parton picture

Diffraction

Observation of inclusive and exclusive diffractive reaction established the dipole picture of DIS

$$\frac{d\sigma_{q\bar{q}}}{d^2b} \sim r^2 \alpha_s xg(x,\mu^2)T(b) \text{ for small gluon density}$$

The same, universal, gluon density describes the properties of many reactions: F_2 , F_L , inclusive diffraction, exclusive J/Psi, Phi and Rho production, DVCS, diffractive jets

F_{L} measurements combined H1 and ZEUS data

F_L more directly connected to gluon density than F_2 at HERA I+II measurement precision of F_L much worse than of F_2

➡ F_L measurement at HERA suffers from systematic errors of small angle electron measurement

In focus: Exclusive J/psi production

educated guess for VM wf is working very well for J/psi and phi and DVCS

Note: J/psi x-section grows almost like $\sigma \propto (x g(x,\mu^2))^2$ no valence quarks contribution

equally good description of Q2 and σ_L/σ_T dependences for J/psi and phi and DVCS

> the determination of gluon density with J/psi would be more precise than by F_2 or F_L (MRT) if J/psi would have small systematic errors

Extracting Proton Shape using dipoles

v.g. description of B for all VM and DVCS with the same wf ansatz → determination of the gluonic proton radius, r_{gg} = 0.6 fm is smaller than the quark radius r_p=0.9 fm

Saturation at HERA

Saturation of gluon density is characterized by the size of the dipole, r_s which, at a given x, starts to interact multiple times

$$\frac{d\sigma_{q\bar{q}}}{d^2b} = 2\left[1 - \exp\left(-\frac{\pi^2}{2N_C}r^2\alpha_s \ xg(x,\mu^2)T(b)\right)\right] = 2(1 - \exp(-1/2))$$

Saturated gluons form a new state of matter, CGC?

A Modification of the Saturation Model: DGLAP Evolution

J. Bartels^(a), K. Golec-Biernat^(a,b) and H. Kowalski^(c)

Unintegrated Gluon Distribution

The ridge in proton-proton collisions at the LHC

Adrian Dumitru,^{1,2} Kevin Dusling,³ François Gelis,⁴ Jamal Jalilian-Marian,² Tuomas Lappi,^{5,6} and Raju Venugopalan³

$$C_2(\mathbf{p}_{\perp}, y_p, \mathbf{q}_{\perp}, y_q) \equiv \frac{\mathrm{d}N}{\mathrm{d}y} \left[\frac{\frac{\mathrm{d}N_2}{\mathrm{d}^2 \mathbf{p}_{\perp} \mathrm{d}y_p \mathrm{d}^2 \mathbf{q}_{\perp} \mathrm{d}y_q}}{\frac{\mathrm{d}N}{\mathrm{d}^2 \mathbf{p}_{\perp} \mathrm{d}y_p} \frac{\mathrm{d}N}{\mathrm{d}^2 \mathbf{q}_{\perp} \mathrm{d}y_q}} - 1 \right], \quad (2)$$

Two particle correlation

$$\begin{aligned} \frac{\mathrm{d}N_2}{\mathrm{d}^2\mathbf{p}_{\perp}\mathrm{d}y_p\mathrm{d}^2\mathbf{q}_{\perp}\mathrm{d}y_q} &= \frac{\alpha_s^2}{16\pi^{10}} \frac{N_c^2S_{\perp}}{(N_c^2-1)^3 \mathbf{p}_{\perp}^2\mathbf{q}_{\perp}^2} \\ \times \int \mathrm{d}^2\mathbf{k}_{\perp} \left\{ \Phi_A^2(y_p,\mathbf{k}_{\perp}) \Phi_B(y_p,\mathbf{p}_{\perp}-\mathbf{k}_{\perp}) \right. \\ & \times \left[\Phi_B(y_q,\mathbf{q}_{\perp}+\mathbf{k}_{\perp}) + \Phi_B(y_q,\mathbf{q}_{\perp}-\mathbf{k}_{\perp}) \right] \\ & \left. + \Phi_B^2(y_q,\mathbf{k}_{\perp}) \Phi_A(y_p,\mathbf{p}_{\perp}-\mathbf{k}_{\perp}) \right] \\ & \left. \times \left[\Phi_A(y_q,\mathbf{q}_{\perp}+\mathbf{k}_{\perp}) + \Phi_A(y_q,\mathbf{q}_{\perp}-\mathbf{k}_{\perp}) \right] \right\} \end{aligned}$$

Inclusive gluon spectrum

$$\begin{split} \frac{\mathrm{d}N}{\mathrm{d}^2\mathbf{p}_{\perp}\mathrm{d}y_p} &= \frac{\alpha_s N_c S_{\perp}}{\pi^4 (N_c^2 - 1)} \frac{1}{\mathbf{p}_{\perp}^2} \\ &\times \int \frac{\mathrm{d}^2\mathbf{k}_{\perp}}{(2\pi)^2} \Phi_A(y_p, \mathbf{k}_{\perp}) \, \Phi_B(y_p, \mathbf{p}_{\perp} - \mathbf{k}_{\perp}) \; . \end{split}$$

G. 5: A typical diagram which gives an angular collimation.

 $|p_T - k_T| \sim Q_S \text{ and } |q_T - k_T| \sim Q_S$ \rightarrow $p_T || k_T$

Multiple Interactions in DIS

Henri Kowalski Deutsches Elektronen Synchrotron DESY, 22603 Hamburg

published in proceedings of the HERA-LHC Workshop

$$\sigma_{\gamma^* p} = \frac{1}{W^2} Im A_{\gamma^* p \to \gamma^* p} (W^2, t=0).$$

Fig. 4: Three examples of 2-ladder contributions (lhs), with the corresponding, schematical, detector signatures (rhs). Top row: the diagram (a) with the cut positions (2) describes diffractive scattering. Middle row: the diagram (b) with the cut position (1) describes inclusive final states with single density of cut partons. Bottom row: the diagram (c) with the cut position (2) describes inclusive final states with increased multiplicity.

AGK cutting rules

X-section for observing a final state with k-cut pomerons, σ_k with the amplitude for exchange of m pomerons, $F^{(m)}$

$$\frac{d\sigma_{qq}}{d^2b} = 2 \sum_{m=1}^{\infty} (-1)^{m-1} F^{(m)} \qquad \sigma_k = \sum_{m=k}^{\infty} (-1)^{m-k} 2^m \frac{m!}{k!(m-k)!} F^{(m)}.$$

$$\frac{d\sigma_{qq}}{d^2b} = 2\left(1 - \exp(-\frac{\Omega}{2})\right). \qquad \qquad \Omega = \frac{\pi^2}{N_C} r^2 \alpha_s(\mu^2) xg(x,\mu^2) T(b)$$

$$\frac{d\sigma_{qq}}{d^2b} = 2\left(1 - \exp(-\frac{\Omega}{2})\right) = 2\sum_{m=1}^{\infty} (-1)^{m-1} \left(\frac{\Omega}{2}\right)^m \frac{1}{m!}$$

 $F^{(m)} = \left(\frac{\Omega}{2}\right)^m \frac{1}{m!},$

$$\frac{d\sigma_k}{d^2b} = \frac{\Omega^k}{k!} \exp(-\Omega)$$

Fig. 10: Fractions of single (k=1), multiple interaction (MI) and diffraction (D) in DIS

