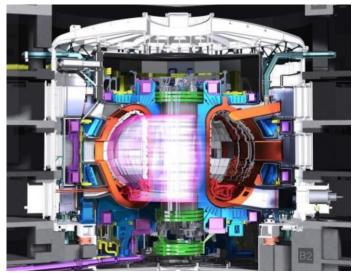


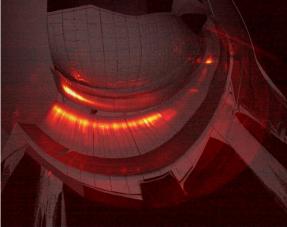
Overview of TUL-DMCS Projects and MicroTCA.4 Developments

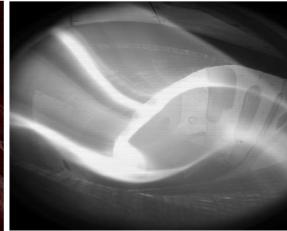
Dariusz Makowski, D.Sc., Associate Professor

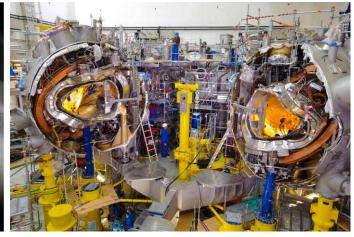
Agenda


- Image Acquisition and Processing with MicroTCA.4
 - Image Processing for Machine Protection and Control
- Smart MMC and RMC solution for xTCA systems
- Basic-AMC
- High-power piezo driver for European Spallation Source
 Accelerator

Fusion Projects - Plasma Diagnostics


- Works since 2010
- Applications:
 - ITER
 - IPP/W7-X
 - A. WinterThu 8/12, 9:45

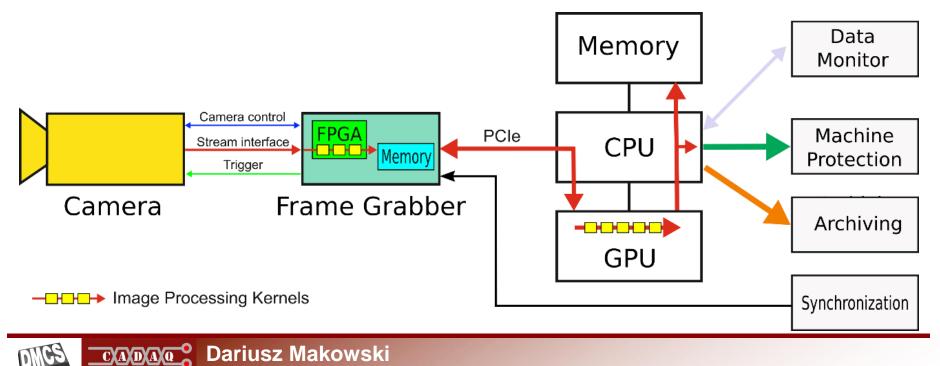

IR Diagnostics



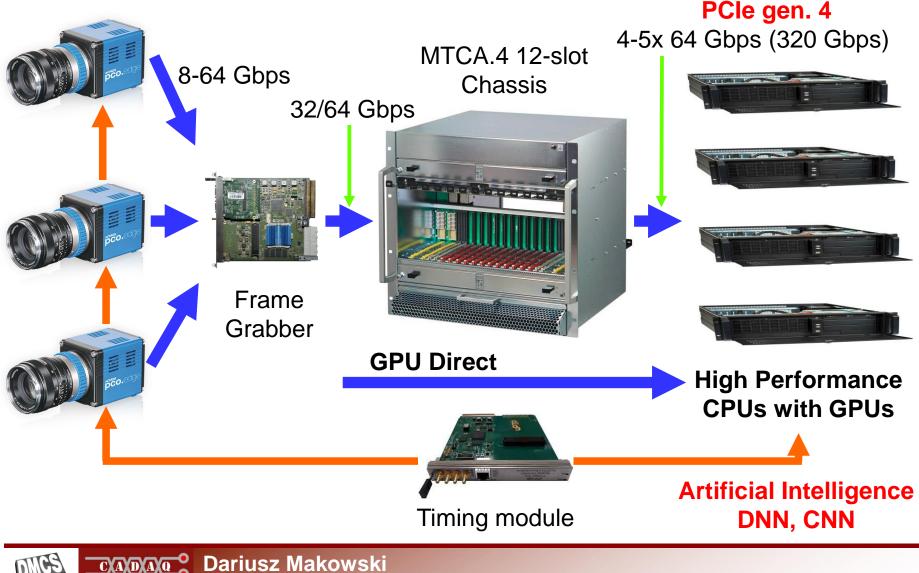
VIS Diagnostics

W7-X Stellarator

CADACO Dariusz Makowski COUISITION LABORATORY 11th MTCA Workshop, Dec. 8, 2022


ITER Tokamak

3/24


Imaging Diagnostics – Image Acquisition and Processing

- Camera provides 1 or more streams of images
- Frame grabber configures camera, start and stop DAQ
- All devices are synchronised with machine (each frame includes timestamp)
- All operations must work in <u>real-time</u> (hard real-time system)
- Developed hardware/software should be compatible with MicroTCA.4 subsystems

control and data 11th MTCA Workshop, Dec. 8, 2022

Image Acquisition and Processing with MicroTCA.4

Dariusz Makowski

CONTROL AND DATA ACOUISITION LABORATORY

11th MTCA Workshop, Dec. 8, 2022

Hardware is Available

- **Camera Link** 2.04 Gb/s, 5.44 Gb/s, 6.8 Gb/s
- Camera Link-HS 2.4 Gbps / 128 Gbps
- CoaXPress 2.0
- **1 GigE Vision** 800 Mb/s
- 10/25 GigE Vision 10/25 Gbps
- **IEEE1394/Fire Wire** 0.4 Gb/s (1394a) or 0.8 Gb/s (1394b)
- **HD-SDI**

SCD Hercules (CL)

Emergent HR-12000M camera with

n x 6.25/12.5 Gb/s (n=4 \rightarrow 25/50 Gb/s)

1.45 Gb/s (max. 2.9 Gbps)

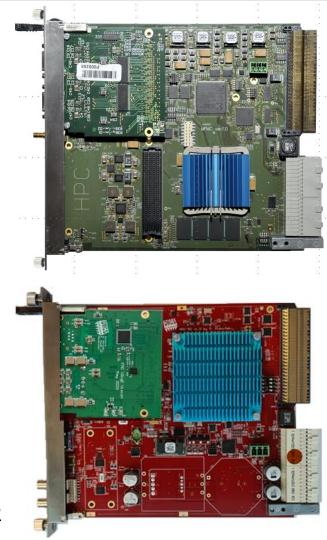
6/24

HDSDí

10 GigE Vision interface

Dariusz Makowski CADA C CONTROL AND DATA

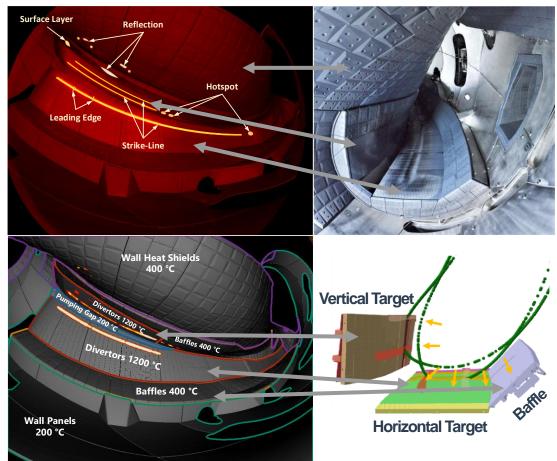
11th MTCA Workshop, Dec. 8, 2022


FMC Carrier Modules

Frame grabber is composed of:

- Hardware we have
- FMC carrier
 - Artix 7 FPGA (<6.5 Gb/s)</p>
 - Zynq US+ (<16 Gbps)</p>
 - Kintex US+ (<32 Gb/s)</p>
- FMC modules supporting various camera interfaces (8 standards)

Software support:

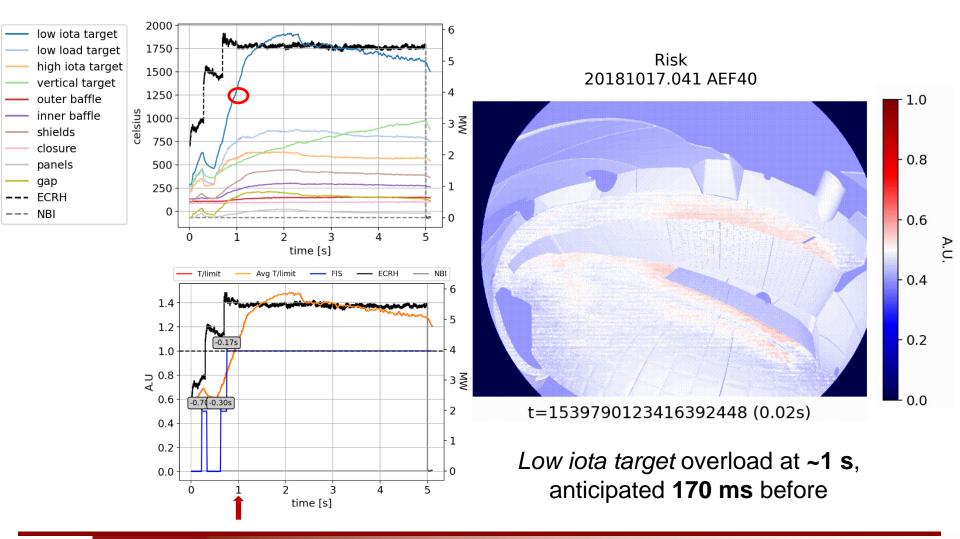

- IP cores for selected camera interfaces
- Common Linux driver (dmtcauni)
- Dedicated camera library (GenlCam)
- Real-time processing software
- Algorithms (FPGA, CPU, GPU)
- We move from <u>development phase</u> to <u>maintenance</u>

Machine Protection with Imaging Systems

- Thermal Overload Detection system is being prepared for the OP2.1 campaign in Wendelstein 7-X
- Protect Plasma Facing Components (PFCs) from thermal overloads with infrared (IR) cameras
- Trigger the Fast Interlock System (FIS) to terminate a discharge when a thermal overload is anticipated
- W7-X has 12 IR cameras, and 10 divertor units are monitored

9/24

Cameras Assembled in Endoscope


PCO Edge 5.5, CLHS **SCD Hercules, CL**

CADA CONTROL AND DATA COULSTITION LABORATORY DATA COULSTITION LABORATORY DATA

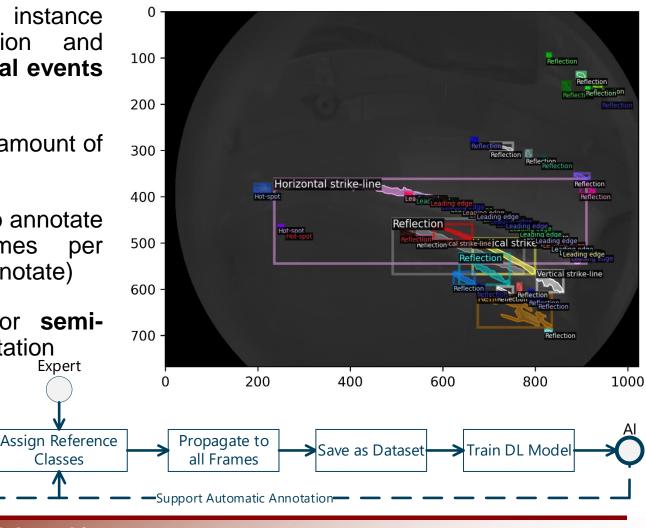
10/24

Thermal Overload Detection (TOD)

CADAC Dariusz Makowski CONTROL AND DATA ACQUISITION LABORATORY
Dariusz Makowski
11th MTCA Workshop, Dec. 8, 2022

Thermal Event Detection and Classification

- **Deep Learning** for instance segmentation (detection and classification) of thermal events in IR images
- Requires a substantial amount of annotated data
- Images are **complex** to annotate manually (100 frames per discharge second to annotate)
- Develop a method for semiautomatic image annotation Expert

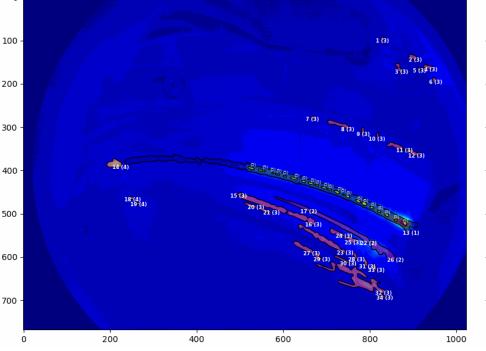

Propose Reference

Segmentation

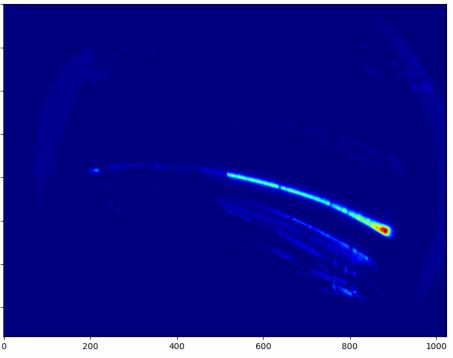
CXAXDXAXQ

CONTROL AND DATA

Image Processing


11th MTCA Workshop, Dec. 8, 2022 COUISITION LABORATORY

Dariusz Makowski


Classes

Discharge Sequence Annotation

Annotated Image

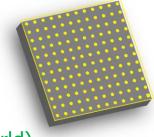
Image without Background

- 1: Horizontal strike-line
- 2: Vertical strike-line
- **3: Reflection**

4: Hot-spot5: Leading edge6: UFO

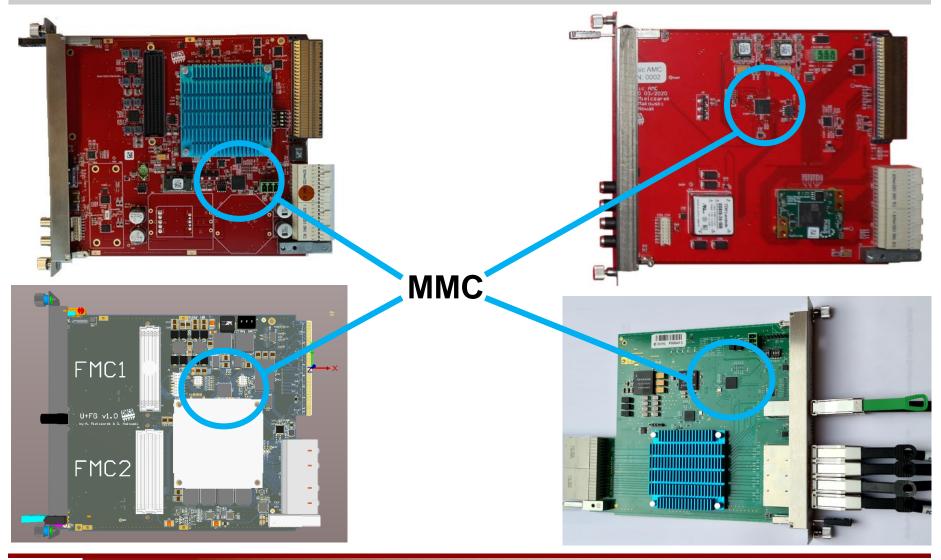
Smart MMC and RMC solution for xTCA systems including FMC support

CADACO Dariusz Makowski UISITION LABORATORY 11th MTCA Workshop, Dec. 8, 2022


Smart MMC and RMC solution for xTCA

- TUL-DMCS works on MMC/IPMC solutions since 2006
- ASIC-like solution:
 - Miniature size 15 mm x 15 mm x 2 mm
 - Cost-effective solution
- Looking for solution for both:
 - AdvancedTCA (Carrier and RTM)
 - MicroTCA (AMC, RTM)
 - Basic and Advanced versions
- ARM microcontroller
 - 1 or 2 ARM cores
 - Low consumption power
 - Ready to be integrated with RTM
- Programmable logic with up to 12 I2C interfaces
- Working of firmware and software
 - Full HPM.1 support including HPM.1 roll-back (first time in MTCA.4 world)

CADAC Dariusz Makowski CONTROL AND DATA UISITION LABORATORY 11th MTCA Workshop, Dec. 8, 2022

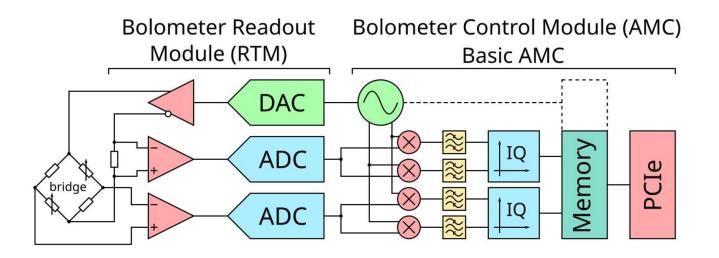


14/24

15/24

MicroTCA – MMC Implementations

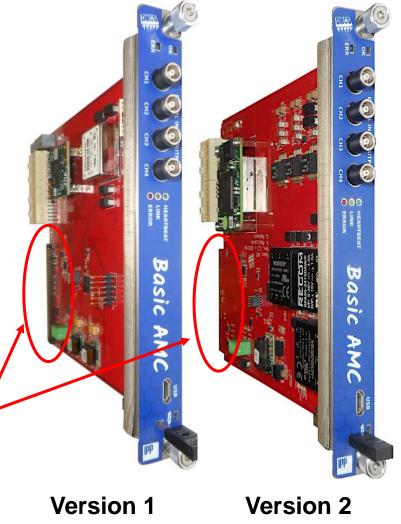
CADACO Dariusz Makowski CONTROL AND DATA ACQUISITION LABORATORY
Dariusz Makowski
11th MTCA Workshop, Dec. 8, 2022


Basic-AMC – the low-cost MicroTCA.4 Compliant Carrier Module

- See presentation on Wed 7/12, 16:45
- See presentation on Thu 8/12, 9:45

CAXDAC Dariusz Makowski CONTROL AND DATA DUSITION LABORATORY 11th MTCA Workshop, Dec. 8, 2022

Bolometer System for W7X

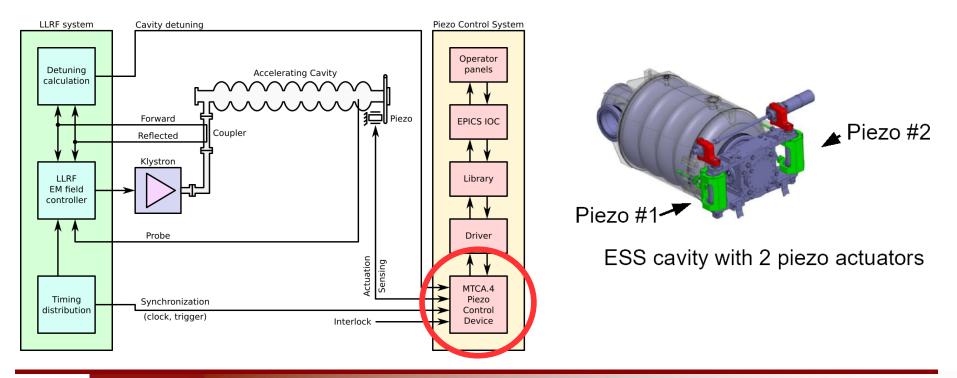


- Use MicroTCA.4 standard to build the system, cost-effective design
- Provides excitation signal for bolometer Wheatstone bridge
- Measure and digitally process signal from the Wheatstone bridge
- Measurements used for real-time plasma control
- Data acquisition and processing part implemented as D-AMC
- Analogue low-noise front end and digitalisation part implemented as D-RTM

CADA O Dariusz Makowski COUTSTICU AND DATA CQUISITION LABORATORY 11th MTCA Workshop, Dec. 8, 2022

Basic-AMC Features

- Based on commercial Trenz FPGA module
- Offers multi-gigabit connectivity
- FPGA I/O signals on Zone 3 and three LVDS clocks
- Provide voltages for analogue components on RTM
- The PCB has only 6 metal layers, including two full ground planes
- Pre-production succeeded (no problems detected)
- Production finished (ca. 55 modules)
- Problems with components (Harting/ITB connectors) – need to redesign PCB
- Final test next month...


High-power piezo driver for European Spallation Source Accelerator

CAXDAC Dariusz Makowski CONTROL AND DATA DUSITION LABORATORY 11th MTCA Workshop, Dec. 8, 2022

High Power Piezo Driver - Motivation

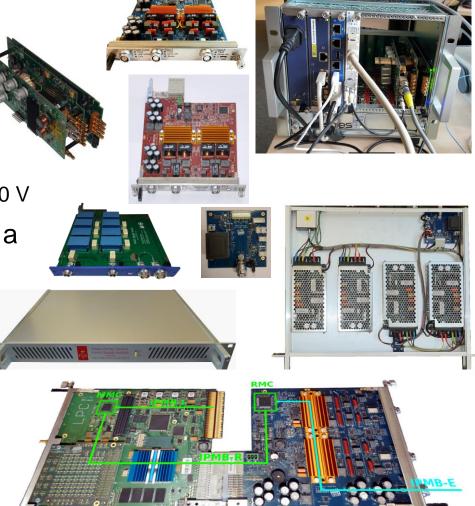
- This work is being done in frame of the Polish in-kind delivered by the Polish Electronic Group (PEG) within in-kind agreement signed between PEG and ESS on 2016-11-08, (together with Schedule AIK 8.2, signed 09.2017, ESS-0060409)
- Department of Microelectronics and Computer Science, Lodz University of Technology as a member of PEG consortium is responsible for piezo driver system delivery for elliptical cavities of ESS linac.

CADA O Dariusz Makowski COUISITION LABORATORY 11th MTCA Workshop, Dec. 8, 2022

MicroTCA.4 Workshop in 2017

MicroTCA.4 for Industry and Research

Dariusz Makowski on behalf of DMCS Team DESY, 7 December 2017



CANDAG O Dariusz Makowski

11th MTCA Workshop, Dec. 8, 2022

History...

- Developed and tested 3 versions of piezo driver (HPD)
 - Linear amplifier
 - PWM amplifier
 - Bipolar and unipolar variants
 - Various voltage ranges: +/-100 V, +/- 200 V
- Developed and tested 2 versions of a dedicated Power Supply Module (PPSM)
- Finally agreed for:
 - HPD-200 (~+/- 190 V, ~380 Vpp)
 - PPSM-200 (+/- 100 V)
- Class-D amplifiers

23/24

Current Status

Started mass production on beginning of 2022

- HPD-200 (130 pieces)
- PPSM-200 (130 pieces)
- Big problems with components availability
 - Components changed and PCBs redesigned
- Final production ongoing
 - PPSM-200 (40 pieces manufacture), +90 under production
 - HPD-200 pre-production started, mass production in January'2023
- Final tests and delivery to ESS

CADACO Dariusz Makowski UISTTION LABORATORY 11th MTCA Workshop, Dec. 8, 2022

Thank you for your attention

CADAO Dariusz Makowski CONTROLAND DATA CQUISITION LABORATORY 11th MTCA Workshop, Dec. 8, 2022