PETRAIV. NEW DIMENSIONS

Conceptual Design of the Multi-Bunch Feedback for the Synchrotron Radiation Source PETRA IV based on the Xilinx Zynq UltraScale+ RFSoC

11th MicroTCA Workshop for Industry and Research, Dec 6-8, 2022

Szymon Jabłoński, FOFC (MSK) Hamburg, 07.12.2022

Agenda

- Short introduction to the Multi-Bunch Feedback (MBFB) of PETRA IV
- MicroTCA.4 based electronics for the MBFB (concept)

MBFB parameters

Requirements and infrastructure

PETRA IV design parameters in the brightness (B) and timing (T) mode and the requirements for the T-MBFB

Design Parameter	Value
Energy E	6 GeV
Revolution frequency f _{rev}	130.12 kHz
Emittance (ϵ_x / ϵ_y)	< 20 / 4 pm rad (B) /
	< 50 / 10 pm rad (T)
Total current I	200 mA (B), 80 mA (T)
Number of bunches M	max. 3840 (B), 80 (T)
Bunch current I _b	<70 µA (B), 1 mA (T)
Bunch spacing T _{rep}	2 ns (B), 96 ns (T)
Bunch length σ_t	45.7 ps (B), 64.3 ps (T)
Betatron freq. (f_x / f_y)	23.4 kHz / 35.2 kHz
T-MBFB det. bandwidth	> 500 MHz
T-MBFB det. resolution	<1 μ m at \pm 1 mm det. range
T-MBFB damping time τ	<40 turns (A _p < 200 µm)

MBFB architecture

Feedback signal flow and diagnostics

- Feedback signal flow
 - Stripline BPM (1 GHz)
 - Pulse multiplier and filtering (increase SNR)
 - Beam offset compensation (increase of dynamic range and resolution)
 - Signal conditioning and combline filter
 - 5 GSPS ADCs
 - Processing DAMC-DS5014DR
 - 10 GSPS DACs
 - High power amplifiers (HPAs)
 - Stripline kickers (DC-250 MHz)
- Diagnostics and tools for machine studies
 - Diagnostics of kick voltage of HPAs
 - Diagnostics of bunch phase, charge, position, profile
 - Tune measurement, growth-damp analysis, emittance control

S. Jablonski, H.T. Duhme, B. Dursun, J. Klute, S. H. Mirza, S. Pfeiffer, H. Schlarb, Conceptual Design of the Transverse Multi-Bunch Feedback for the Synchrotron Radiation Source PETRA IV, Proc. of IBIC2022, Kraków, Poland, Sep. 2022.

MBFB electronics

MicroTCA.4 modules

X

WORK IN PROGRESS

WORK I

PROGRES

.

Modules for the feedback:

- DRTM-MBFB-CSI beam offset compensation
- WORK IN PRODESS • DRTM-MBFB-FE – front-end
- DAMC-DS5014DR ADC / DAC / processing board
 - DAMC-FMC2ZUP

Modules for the HPA diagnostics:

- DAMC-DS812ZUP ADC board
 - ORTM-DS812FT front-end

Modules for the timing and clocks:

- 🔀 🔹 eRTM-CLOCK
 - X3Timer (H. Lippek)

Support modules:

MPS

• MCH, CPU, Power module

New Zone3 Class RF1.1 recommendation

Differential pins for DACs

- Differential output DACs in the Class RF1.1 instead of Gbit-Links in the Class RF1.0
- Single-ended signals up 6 GHz, high isolation between channels

Class RF1.0

			Digital Clock IO	Digital fixed IO	Digital Clock Input	Divited	user IO		Standard Gbit-Links		MTCA.4	Management
1	J3	0	10	9	8	7	6	5	4	3	2	1
	•	t	AMC-CLK-	OUT1-/D7-	RF-CLK3-	D5-	D2-	GBT7-TX-	GBT4-TX-	GBT1-TX-	TMS	TDO
	+	е	AMC-CLK+	OUT1+/D7+	RF-CLK3+	D5+	D2+	GBT7-TX+	GBT4-TX+	GBT1-TX+	TDI	TCK
1	•	d	RF-CLK2-	OUT0-/D6-	RF-CLK1-	D4-	D1-	GBT6-TX-	GBT3-TX-	GBT0-TX-	SCL	SDA
	+	C	RF-CLK2+	OUT0+/D6+	RF-CLK1+	D4+	D1+	GBT6-TX+	GBT3-TX+	GBT0-TX+	MP	PS#
		b	RF-CLK0-	AMC-TCLK-	RTM-CLK-	D3-	D0-CC-	GBT5-TX-	GBT2-TX-	GBT0-RX-	PWRB2	PWRB1
	+	a	RF-CLK0+	AMC-TCLK+	RTM-CLK+	D3+	D0-CC+	GBT5-TX+	GBT2-TX+	GBT0-RX+	PWRA2	PWRA1
			Single Ended Analog Signals			1.1						
[J3	1	3	2	1							
		В	ADC-IN7	DAC-OUT1	DAC-OUT3							
		A	ADC-IN6	DAC-OUT0	DAC-OUT2	1						
	J3	2	3	2	1							
		В	ADC-IN1	ADC-IN3	ADC-IN5]						
		A	ADC-IN0	ADC-IN2	ADC-IN4							

Table 1: Zone 3 - Class RF1.0 pin assignment J30, J31 and J32 connector, AMC side view

Coaxi Pack 2 SMD L3/L3 FEXT/NEXT A -> B

Courtesy of J. Zink

Class RF1.1

		Digital Clock IO	Digital fixed IO	Digital Clock Input	Digital user IO		Differential DACs			MTCA.4 Management	
J	30	10	9	8	7	6	5	4	3	2	1
-	f	AMC-CLK-	OUT1-/D7-	RF-CLK3-	D5-	D2-	DAC7-	DAC4-	DAC1-	TMS	TDO
+	е	AMC-CLK+	OUT1+/D7+	RF-CLK3+	D5+	D2+	DAC7+	DAC4+	DAC1+	TDI	TCK
-	d	RF-CLK2-	OUT0-/D6-	RF-CLK1-	D4-	D1-	DAC6-	DAC3-	DAC0-	SCL	SDA
+	с	RF-CLK2+	OUT0+/D6+	RF-CLK1+	D4+	D1+	DAC6+	DAC3+	DAC0+	MP	PS#
-	b	RF-CLK0-	AMC-TCLK-	RTM-CLK-	D3-	D0-CC-	DAC5-	DAC2-	GBT0-RX-	PWRB2	PWRB1
+	а	RF-CLK0+	AMC-TCLK+	RTM-CLK+	D3+	D0-CC+	DAC5+	DAC2+	GBT0-RX+	PWRA2	PWRA1
	Single Ended Analog Signals										
J	31	3	2	1							
	В	ADC-IN7	DAC-OUT1	DAC-OUT3							
	Α	ADC-IN6	DAC-OUT0	DAC-OUT2	1						
J	32	3	2	1							
-	В	ADC-IN1	ADC-IN3	ADC-IN5							
	Α	ADC-IN0	ADC-IN2	ADC-IN4							

Table 1: Zone 3 - Class RF1.1 pin assignment J30, J31 and J32 connector, AMC side view

DAMC-DS5014DR based on Xilinx Zynq UltraScale+ RFSoC Gen. 3

Basic parameters

- 8x ADC (grouped in 4 dual-channel tiles)
 - 14-bit resolution, sampling rate of 5 GSPS
 - AC-coupling (30 MHz 6 GHz) to front panel or to Zone 3 connector (Class RF1.1) – single-ended
- 8x DAC (grouped in 2 four-channel tiles)
 - 14-bit resolution, sampling rate of 10 GSPS
 - AC-coupling (30 MHz 6 GHz), single-ended to front panel or DC-coupling (DC – 2.5 GHz), differential to Zone 3 connector (Class RF1.1)
 - Variable output power (-22 dBm to 3 dBm)
- Memory
 - PS: 16GB 64-bit DDR4, PL: 2x 16GB 64-bit DDR4
 - eMMC-NAND FLASH, QSPI FLASH, Micro SD Card, PSRAM
- Interfaces
 - 100 GbE zQSFP+, USB type-C on the front panel
 - 12x GTY to AMC ports 4-15

Courtesy of M. Fenner

DAMC-DS5014DR based on Xilinx Zynq UltraScale+ RFSoC Gen. 3

Clock tree + specification

- Clocking
 - External reference clock from front panel, RTM (RTM_CLK), TCLKA/B or WR
 - Sampling clock for the RF converters
 - Wideband RF synthesizer
 - External sampling clock from front panel
 - Clock generated by the internal RFSoC PLL
 - White Rabbit endpoint
 - Clock tree configurable from MMC Stamp or Processing System
- Specification (in preparation)
 - Detailed information on the DAMC-DS5014DR module parameters, interfaces and electrical properties

Xilinx Zynq UltraScale+ RFSoC Gen. 3

Performance of ADCs and DACs measured with the ZCU208 Eval Kit

- ADCs (f_{clk}=5 GHz, f_{rf}=1 GHz)
 - Residual white phase noise: -154.5 dBc/Hz
 - Timing jitter: 70 fs rms (1kHz – 250MHz)
 - Addtive white amplitude noise: -155 dBc/Hz
 - Integrated Amplitude Noise: 0.044% (1kHz – 250MHz)
- DACs (f_{clk} =10 GHz, f_{rf} =1.5 GHz)
 - White phase noise: <-162 dBc/Hz
 - Timing jitter: 36.5 fs rms (10 Hz – 100 MHz)
 - White amplitude noise: <-165 dBc/Hz
 - Integrated Amplitude Noise: 0.020% (10 Hz – 10 MHz)

Noise of analog-to-digital converters

Noise of digital-to-analog converters

DRTM-MBFB-FE: front-end/back-end module for the DAMC-DS5014DR

Basic parameters

- 8x front-end for ADCs
 - Single-ended, AC-coupled
 - Possible various assembly versions
 - Bandwidth: 40 MHz 6 GHz
 - Gain: -25 dB to +20 dB, 0.25 dB steps
 - Max. input RF power: +30 dBm
 - 2x up to 6-pole LC filters
- 8x back-end for DACs
 - Single-ended (AC-coupled) or differential (DC-coupled) output
 - Bandwidth: DC 2.5 GHz
 - Output power: -15 dBm to +13 dBm
 - 2x up to 4-pole LC filters
- Class RF1.1
- CPLD for diagnostics and control

Diagnostics of high power amplifiers

DRTM-DS812FT + DAMC-DS812ZUP

- Low-latency, 8-channel, 12-bit digitizer
- AC/DC inputs on the AMC front panel or over Zone3 Class RF1.0
- 2.7-GHz bandwidth
- Non-harmonic SFDR of about -90 dBc
- Sampling rate of 500/800 MSPS each channel
- Zynq UltraScale+™ MPSoC
- 4 GBytes data memory
- Low-noise PLL with on-board VCSO and TXCO
- Trigger inputs and White Rabbit support
- PCIe Gen.3 x 8 and zQSFP+ support
- Support for JESD DACs via Zone 3

Pictures by courtesy of J. Zink

- MicroTCA.4 form factor with the "analog" RTMs fits well to implement wideband, reliable and high performance electronics for the Multi-Bunch Feedback of Petra IV
- RFSoC has been selected due to its compactness (lower PCB design effort), processing power, high-speed interfaces and low-noise RF-ADCs/RF-DACs
- The project involves the development of a few RTM/AMC modules, the system prototype is expected in 2024

Thank you

Contact

DESY. Deutsches	Szymon Jabłoński				
Elektronen-Synchrotron	WP 2.08 – Fast Orbit Feedback Controls (FOFC				
,	szymon.jablonski@desy.de				
www.desy.de	+49 40 8998 - 4290				