
 Userspace Hardware Abstraction Layer for PCIe 
devices

Érico N. Rolim

MicroTCA Workshop 2022



Slide 2

Target Hardware
● The Sirius Beam Position Monitors (BPM) 

and Fast Orbit Feedback (FOFB) systems 
use MicroTCA crates:
● The backplane interconnect is set up 

with a PCIe bus between the AMC 
boards and the host CPU

● The AMC boards in use are the AFCv4 
(presented earlier today) and AFCv3.1 
boards

https://ohwr.org/project/afc/tree/wut_afc4


Slide 3

Software Requirements
● Interface with the AFC boards via the PCIe bus

● BAR4 exposes hardware register maps for each FPGA core via Wishbone, 
which we use as our main interface

● We get the addresses for the register maps from a Self Describing Bus 
(SDB) filesystem in address 0 of BAR4

● Register map header and structs provided by Cheby (code generator from 
register map definitions)

● So why are we looking for a new solution?
● Should be…

● Easy to debug
● Maintainable in the long term



Slide 4

Current Issues
● There are 3 main kinds of daemons 

responsible for the hardware interaction
● They use RPC – ZeroMQ, specifically – 

between themselves
● These 3 kinds are:

● Hardware Abstraction Layer for 
Control Systems (HALCS) – in-house 
development

● Malamute
● EPICS IOCs – in-house development

IOC

Malamute

HALCS



Slide 5

HALCS
● Motivation was to expose the hardware safely, enabling multiple 

simultaneous clients which don’t interface directly with the hardware

● Uses a custom kernel driver to talk to the hardware: makes it harder to 
update our host distribution

● The chosen internal architecture and abstractions ended up being too 
complex: makes it hard to debug issues

● The complexity also lead to verbosity: adding new functionality requires 
making changes in multiple files, with no automatic verification

● Not enough abstraction: mainly accesses register fields



Slide 6

Malamute
● A communication broker between HALCS instances and their clients

● Abandoned project (breaks the ZeroMQ aspect of not having a broker)
● Has memory leaks that used to make our crates unresponsive until 

we added a CGroups memory limit



Slide 7

EPICS IOC
● Implemented with the EPICS Asyn module together with the HALCS 

client library
● Includes a state machine for high speed acquisitions

● Implemented as a monolithic driver, making code organization and 
reuse harder



Slide 8

New Design
● The new design is based on the issues that have been observed during 

development and operation

● Don’t use a custom kernel driver: userspace only
● Remove RPC layer: don’t duplicate the IOC’s role
● More complete abstractions: deal with signed and fixed-point values

● The initial implementation of this design is open source and has been 
called μHAL



Slide 9

μHAL
● C++17 library (making use of language advancements)
● Implementation is split between decoders and encoders

● Decoders store register field values in a hash map using strings as 
identifiers (+ indexes for registers that are organized in “channels”)

● Encoders/controllers can therefore perform sanity checks for 
inputted values
● Deal with field length, hard-coded max values, fixed-point decimal 

point position (determined via a special register – allows changes to 
valid value range without redeploying software)

● Checks register ABI version, to make sure it’s supported



Slide 10

Slide 10



Slide 11

Slide 11



Slide 12

Slide 12



Slide 13

μHAL
● Decoders have the added 

advantage of automatically 
generating a register field 
printer. Calling the class’s 
print() method in a 
command line utility is 
enough.

Slide 13



Slide 14

μHAL – Implementation
● Depends on Linux specific functionality

● Find the device for a slot via the /sys/bus/pci/slots/<number>/address file
● Memory map each BAR via /sys/bus/pci/devices/<device>/resource* files

● Currently hard-codes the addressing scheme used by LNLS PCIe devices:
● Paging registers in BAR0 for BAR2 (RAM – acquisition data) and BAR4 

(Wishbone – registers)
● Weird strides in BAR4 addressing



Slide 15

New Design – Trade-offs
● As any design choice does, this new architecture deals with some 

trade-offs

● We can’t use DMA at the moment, since the software is userspace 
only. This has been partially worked around with a custom data copy 
function using SSE 4.2 intrinsics

● There can only be one user of the hardware via this library at a time, as 
the hardware access isn’t thread safe (paging register). This isn’t a deal 
breaker because the hardware functionality is exposed via the EPICS 
IOC (or whichever other control system is used)



Slide 16

(New) EPICS IOC
● Switch to modular architecture for each FPGA module

● One Asyn port for each module
● Can simply instantiate each port as needed
● The eventual plan is to perform dynamic instantiation

● A single IOC source code repository for all our MicroTCA 
devices

● Overall decrease in code size (LoC for a given module in 
μHAL + IOC are half the LoC for the same module in 
HALCS)

● The expectation is that as a new module is developed, its 
EPICS module will be developed in tandem



Slide 17

Next steps
● Consider integration with Linux VFIO module

● Still in userspace, but DMA-capable
● Implement missing modules for a full deployment with our FOFB 

boards
● Full deployment for Timing and BPM boards



Slide 18

Thank you!
μHAL: https://github.com/lnls-dig/uhal
IOC: https://github.com/lnls-dig/erics

Contact: erico.rolim@lnls.br

https://github.com/lnls-dig/uhal
https://github.com/lnls-dig/erics
mailto:erico.rolim@lnls.br


Slide 19

Backup slides



Slide 20

Self Describing Bus

Slide 20



Slide 21

Other developments
● ChimeraTK: not as flexible for what we wanted, didn’t address the 

needs of our acquisition modules
● Most other solutions use some sort of kernel driver, which is a kind of 

dependency we want to avoid



Slide 22

μHAL


	Diapositivo 1
	Diapositivo 2
	Diapositivo 3
	Diapositivo 4
	Diapositivo 5
	Diapositivo 6
	Diapositivo 7
	Diapositivo 8
	Diapositivo 9
	Diapositivo 10
	Diapositivo 11
	Diapositivo 12
	Diapositivo 13
	Diapositivo 14
	Diapositivo 15
	Diapositivo 16
	Diapositivo 17
	Diapositivo 18
	Diapositivo 19
	Diapositivo 20
	Diapositivo 21
	Diapositivo 22

