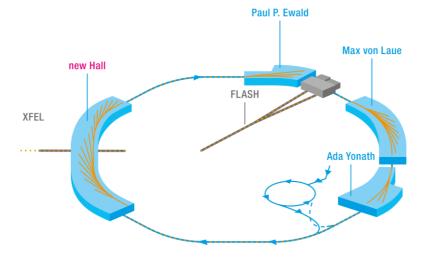
PETRAIV. NEW DIMENSIONS

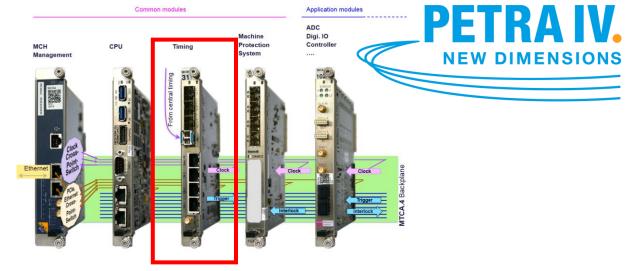
DAMC-X3TIMER

Status report on the PETRA IV timing and synchronisation system developments

Hendrik Lippek in behalf of the PETRA IV Timing & synchronisation project team (WP2.09) Hamburg 08.12.2021

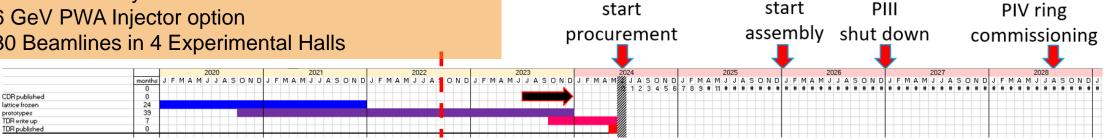

11th MTCA Workshop for Research and Industry

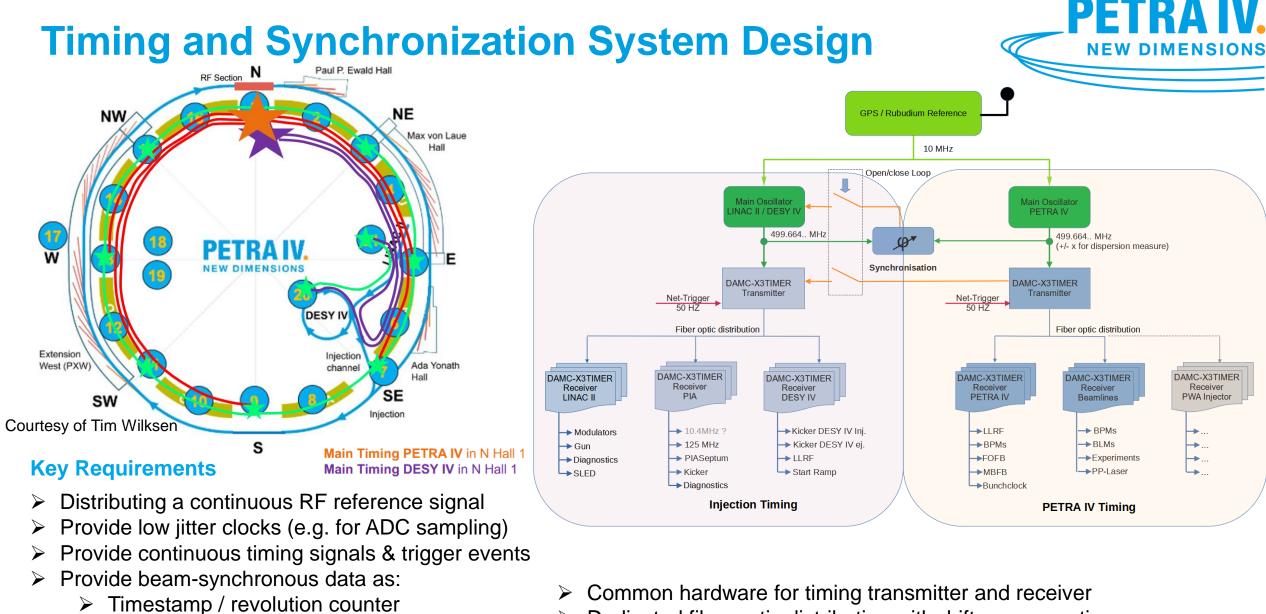
December 6-8, 2022 DESY - Hamburg


PETRA IV

Timeline & Scope

PETRA IV Highlights


- 4th Generation Light source
- low emittance: hor. 10-30 pm rad, vert. < 10 pm rad
- 500 MHz + 1.5GHz RF
- timing / brightness mode: 80 / 3840 Bunches
- new Booster Synchrotron DESY IV
- 6 GeV PWA Injector option
- 30 Beamlines in 4 Experimental Halls


Timing System development for PETRA IV

- MicroTCA.4 components will replace existing PETRA III • hardware for controls and diagnostics
- Make use of experience from well-established Timing System • **concepts** as utilized at the FLASH and European XFEL facility
- Keep the design flexible to enhance functionality during life-cycle of PETRA IV

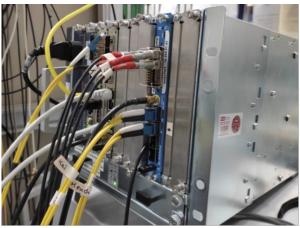
start

DESY. Status report on the PETRA IV timing system developments | Hendrik Lippek | 11th MTCA Workshop for Research and Industry, 08.12.2022

- Dedicated fiber optic distribution with drift compensation
 - Common timing system for accelerator and beamlines

Beam mode / bunch pattern

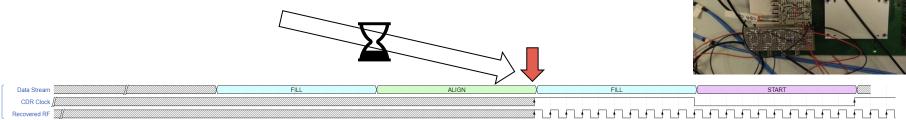
bunch currents


 \geq

Transmitter – Receiver lab setup

- Data transmission over MGT (GTX) transceivers
- Data rate is derived from RF-Input
- Receivers recover the clock from the data stream

> Alignment:


- > Alignment characters (K28.5) in the data
- CDR phase is shifted towards the alignment character

Special comma characters	s used in the protocol
--------------------------	------------------------

Character	Name	Function	8b Data	10b Data	
D21.5	FILL	Idle filler	0xB5	101010 1010	101010 1010
K28.0	START	Start of a message packet	0x1C	001111 0100	110000 1011
K28.1	SYNC	Synchronisation	0x3C	001111 1001	110000 0110
K28.4	PROBE	Link delay measurement	0x9C	001111 0010	110000 1101
K28.5	ALIGN	GTP comma alignment	0xBC	001111 1010	110000 0101
K28.7	RES	Reserved	0xFC	001111 1000	110000 0111

DAMC-FMC1Z7IO

MTCA.4 Crate iming Transmitte 125MHz MGTCLK Receiver 1 10 MHz GPS Triggers SMA100A Z7035 Eval 500MHz SFP RX Clock 8b/10b Oscilloscope Triggers Z7035 Eva

SFP

8b/10b

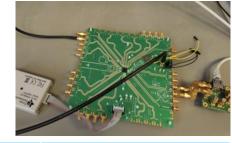
25MHz (CDR) (Clean)

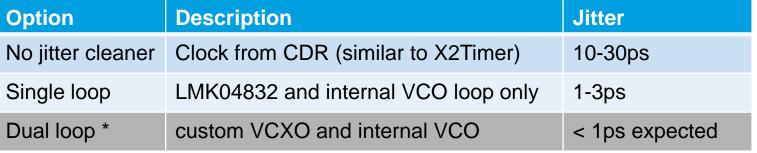
TE0745 – Z7053 evalboard

Receiver 2

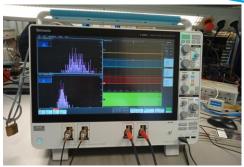
RX Clock

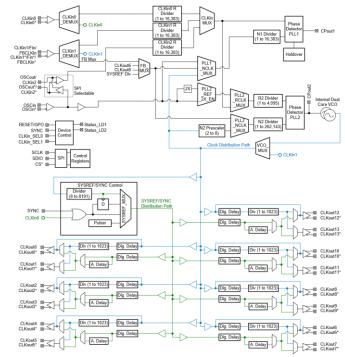
DESY. Status report on the PETRA IV timing system developments | Hendrik Lippek | 11th MTCA Workshop for Research and Industry, 08.12.2022


Clock jitter cleanup


Test Setup

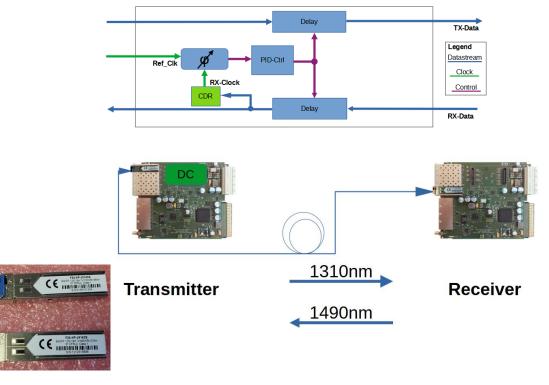
- RF-Generator (R&S SMA100A)
 - > 500 MHz GPS stabilized
- MTCA 7-Slot Crate with 2 * X2Timer
 - > (Transmitter, Receiver)
- Jitter cleaner Eval-Board (LMK04832)
- ➢ 50GS/s Oscilloscope with Jitter&Eye analysis


LMK04832 clock cleaner


- Dual loop PLL
 - PLL1 External custom VCXO -> 499.6643MHz +/-100ppm
 - PLL2 internal 2.5GHz VCO
- ➢ 3 Clock inputs (RF, CDR, Aux)
- internal output dividers
- output delays
- different output levels (LVDS, LVPECS, CMOS,..)

*VCXO samples for test ordered

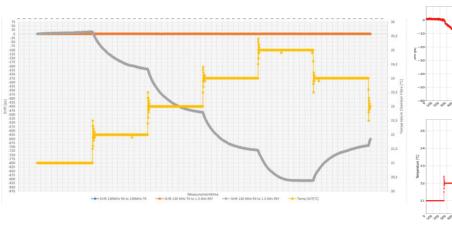
DESY. Status report on the PETRA IV timing system developments | Hendrik Lippek | 11th MTCA Workshop for Research and Industry, 08.12.2022


PETRA IV

NEW DIMENSIONS

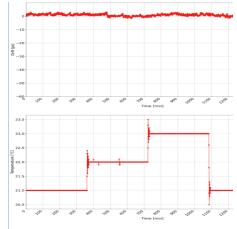
Drift compensation

Active drift compensation on Transmitter side


- Detect phase differences between Ref_CLK and recovered clock (looped back on receiver)
- Sets delays to keep the phase relation constant
- separate module option to keep Receiver BoM cost low
 - > receivers or applications with no critical drift requirements
- Standard transmission over separate fibers for RX and TX
- Fibers (also of a pair) have not the same propagation delay
- Tested also with BiDi Transceivers (dual wavelength, single fiber)

Measurement

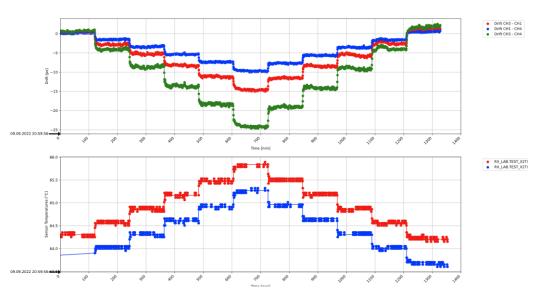
Test-Setup:

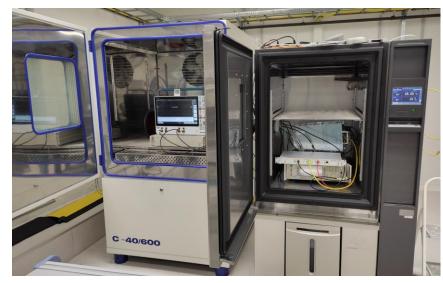

- > 2 x2timers &
- 1km fiber
- tested in climate chamber Results:
- ➢ No compensation -> ~250 ps/°K
- ➢ 2 fibers -> 15 ps/°K
- BiDi-SFP -> ~5 ps uncertainty (without drift over temperature)

No compensation

2 fibers BiDi single fiber SFP

Courtesy of Michael Pawelzik


Thermal considerations and measures


Considerations

- > Thermal drifts in the compensation loop are compensated well
- There is still drift in the out of loop components
 - Dividers
 - Crosspoint-Switches
 - > FPGA
- Temperature changes by MTCA Fan activities have a big influence on AMC temperature and component drifts

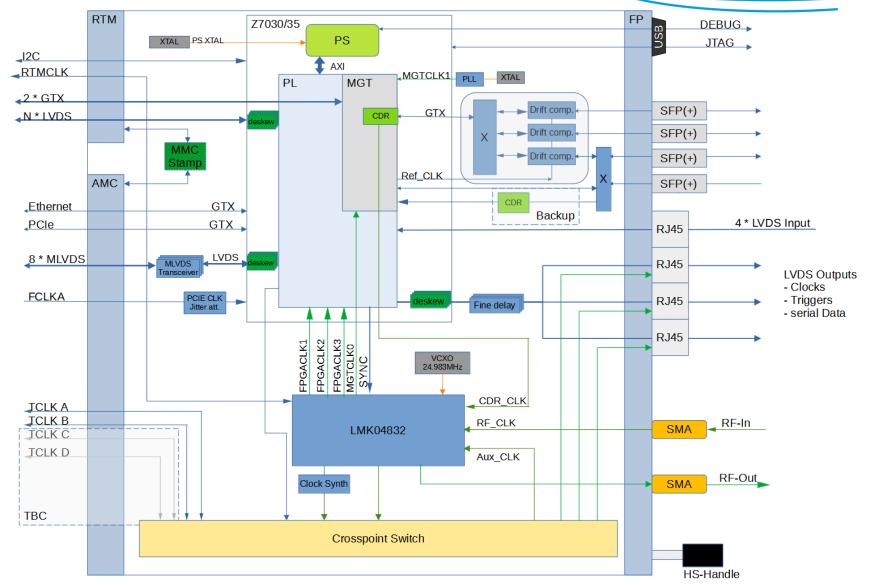
Measures

- Room / Rack / Crate level
 - temperature & humidity controlled electronics room
 - Use water-cooled Racks for constant temperature & best heat dissipation
 - Set Crate to steady air stream configuration
- PCB level
 - Reduce amount of critical components
 - LMK04832 contains also divider, delay and multiplexer
 - Place critical components close together (or on separate PCB)
 - Active thermal stabilization
 - Iocal temperature regulation (with FETs or Peltier)
 - Metal (Copper) cover for thermal conduction
 - > equip-option to keep BoM cost low for non drift-critical requirements

DESY. Status report on the PETRA IV timing system developments | Hendrik Lippek | 11th MTCA Workshop for Research and Industry, 08.12.2022

DAMC-X3TIMER Block Design

Front Panel


- SFP(+) -> timing signal distribution
- RF-Input
- RF-Output
- LVDS Output (RJ45)
- Synchronous RS232 Output
- LVDS Input (Sync signal, Trigger)
- USB (Debug/JTAG)

AMC - Backplane

- PCIe
- Ethernet
- TCLK A/B (C/D tbd.)
- Port 17-20 Trigger/Clock
- ➢ IPMI to MMC

RTM Zone 3 (Class D1.1)

- MGT lanes
- LVDS Trigger / Clocks
- ➢ I2C to MMC
- I2C for configuration

Planned RTM modules

Zone 3 (RTM-Connector)

RTM Class D1.1

- ➢ 42 LVDS IO signals
- ➤ 2 high-speed-links
- Power
- ► I2C

Deutsches Elektronen-Synchrotron Ein Forschungszentrum der Helmholtz-Gemeinschaft

http://mtca.desy.de

Class D1.0, D1.1, D1.2, D1.3, D1.4

Zone 3 Connector Pin Assignment Recommendation for Digital Applications for AMC/ μRTM Boards in the MTCA.4 standard

FEATURES

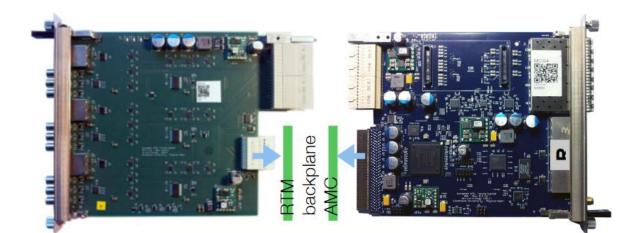
MTCA.4 management zone: • Power, I²C, optional JTAG support

Digital signals in the user zone:

- Class D1.0: 48 LVDS I/O signals
- Class D1.1: 42 LVDS I/O signals, 2 high-speed links
- Class D1.2: 38 LVDS I/O signals, 4 high-speed links
- Class D1.3: 28 LVDS I/O signals, 8 high-speed links
- Class D1.4: 8 LVDS I/O signals, 16 high-speed links

Digital signals with a fixed direction:

- 2 LVDS low phase noise clocks
- 1 LVDS timing output signal
- · 3 LVDS outputs for user applications


APPLICATIONS

- + AMC / $\mu RTM\,$ board design in MTCA.4 standard
- High-speed data processing
- Multi-channel data-converters, sensor readout and output
- Digital signal conditioning boards

GENERAL DESCRIPTION

This Class D1 pin assignment definition of the Zone 3 connector in the MTCA.4 standard is a recommendation mainly for AMC and μRTM boards transferring digital signals over the Zone 3 connector. This digital class is designed for two three row ADF Zone 3 connectors and AMC modules having an FPGA. The subclasses offers different numbers of digital input / outputs and high-speed communication links. The main goal is to classify the undefined Zone 3 pin assignment for applications to achieve a high

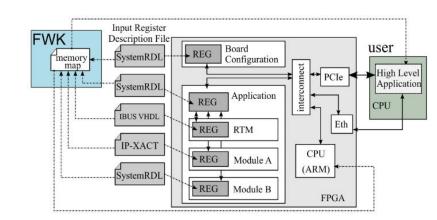
RTM types

- Rear panel interfaces
 - ≻ LEMO
 - SMA Clock output (with LNA)
 - > LVDS
 - > Optical
 - > NIM?
- RF-Backplane interface
 - Clock distribution
- Functional
 - Programmable delay line
 - SFP Fanout module

Pictures from x2timer RTM modules

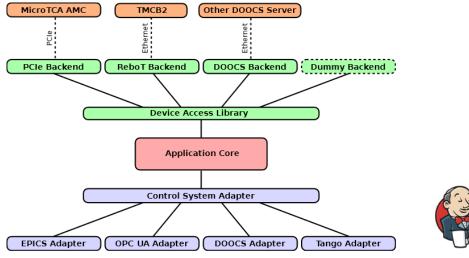
DESYStatus report on the PETRA IV timing system developments | Hendrik Lippek | 11th MTCA Workshop for Research and Industry, 08.12.2022

Firmware framework & software interface

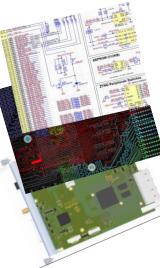

MSK firmware framework

- Generic framework for various (Xilinx) FPGAs
- Maintained by MSK firmware group
- Register maps for software interface
- Supports also ARM core interface for SoC devices

Application Core / ChimeraTK software layer


- Middle layer to abstract hardware and control system
- Supports multiple controls systems
- Uses Xilinx xdma driver to access FPGA via PCIe
- Support to run on (Zynq) ARM cores in preparation
- Public available: https://github.com/ChimeraTK

♦ MSK GitLab



Summary & Roadmap

- For PETRA IV we will top our development on the x2timer design
- Improvements in the DAMC-X3TIMER
 - Improvement of short term jitter by using clock cleaner
 - Better drift stability
 - Usage of BiDi SFP transceivers
 - by thermal optimization of the boards
 - definition of Crate cooling requirements

- > New features due the **Zynq SoC** architecture possible
 - Realtime processing on ARM CPU (e.g. PETRA filling pattern)
 - Controls servers on Zynq SoC
 - More flexibility for configuring peripherals with I2C or SPI
- > More flexibility by using a **Software/Firmware framework**
 - Interface for many control systems
 - Modular firmware for easy portability

Roadmap 2023

- Schematics Design &
- Layout
- Hardware production (Q3)
- Bringup & Test

- Firmware development
- Software development
 - > Servers
 - high level controls

(Q2)

(Q4)

Thank you for your attention!

Contact

DESY. Deutsches Elektronen-Synchrotron

Hendrik Lippek MSK hendrik.lippek@desy.de

www.desy.de