
Extension of the Python
Bindings for the ChimeraTK
DeviceAccess Library

11th MicroTCA Workshop for Industry and Research

Christian Willner

Hamburg, 08.12.2022

ChimeraTK DeviceAccess

ChimeraTK

> Control system and Hardware Interface with Mapped and Extensible Register-based

device Abstraction Tool Kit

> Opensource, available on GitHub

> Maintained by the DESY MSK software group

DeviceAccess

> Lower level layer in ChimeraTK

> Unified abstraction for different backends

DOOCS

Userspace I/O

EPICS

PCIe

…

DESY. | Extension of the Python Bindings for the ChimeraTK DeviceAccess Library | Christian Willner | Hamburg, 08.12.2022 Page 2

http://creativecommons.org/licenses/by/4.0/

Language Comparison

> High-performance

> Resource-oriented

> Compiled

> Ideal for Control Systems

> High-level syntax

> Easy to read

> Interpreted

> Favorite for automation

DESY. | Extension of the Python Bindings for the ChimeraTK DeviceAccess Library | Christian Willner | Hamburg, 08.12.2022 Page 3

http://creativecommons.org/licenses/by/4.0/

Language Comparison

> High-performance

> Resource-oriented

> Compiled

> Ideal for Control Systems

> High-level syntax

> Easy to read

> Interpreted

> Favorite for automation

DESY. | Extension of the Python Bindings for the ChimeraTK DeviceAccess Library | Christian Willner | Hamburg, 08.12.2022 Page 3

http://creativecommons.org/licenses/by/4.0/

Register Accessor Basics

Accessors are classes that offer backend-independent access to registers.

> Can be requested in different dimensionalities

> Decouple the register via UserBuffer

> Have auto-conversion to many UserTypes (int8, uint16, float, etc.)

> Supply blocking read functionality for synchronization

DESY. | Extension of the Python Bindings for the ChimeraTK DeviceAccess Library | Christian Willner | Hamburg, 08.12.2022 Page 4

http://creativecommons.org/licenses/by/4.0/

Project Intention

> Update bindings to mirror C++ functionality

Offer push / poll types

> Align C++ and Python workflow

DESY. | Extension of the Python Bindings for the ChimeraTK DeviceAccess Library | Christian Willner | Hamburg, 08.12.2022 Page 5

http://creativecommons.org/licenses/by/4.0/

Set-Up

C++
#include <ChimeraTK/Device.h>
int main() {

// Open the configuration file for the household:
ChimeraTK::setDMapFilePath("household.dmap");
ChimeraTK::Device toaster("toaster");
toaster.open();

Python Bindings
import deviceaccess as da
da.setDMapFilePath("household.dmap")
toaster = da.Device("toaster")
toaster.open()

DESY. | Extension of the Python Bindings for the ChimeraTK DeviceAccess Library | Christian Willner | Hamburg, 08.12.2022 Page 6

http://creativecommons.org/licenses/by/4.0/

Reading and Writing in C++

// Get accessors for the registers, with user data types in <>:
ChimeraTK::OneDRegisterAccessor<uint16_t> heat_settings =

toaster.getOneDRegisterAccessor<uint16_t>("HEATING_ARRAY");
ChimeraTK::OneDRegisterAccessor<uint8_t> thickness_sensors =

toaster.getOneDRegisterAccessor<uint8_t>("THICKNESS_SENSORS");

// Read the data from the thickness_scanner:
thickness_sensors.read();
// Set heating according to thickness:
for (std::size_t pos = 0; pos < heat_settings.getNElements(); ++pos) {

heat_settings[pos] = 200 + 10 * thickness_sensors[pos];
}
// Write the settings:
heat_settings.write()

DESY. | Extension of the Python Bindings for the ChimeraTK DeviceAccess Library | Christian Willner | Hamburg, 08.12.2022 Page 7

http://creativecommons.org/licenses/by/4.0/

Reading and Writing in C++ - Accessors in Math Operations

// Get accessors for the registers, with user data types in <>:
ChimeraTK::OneDRegisterAccessor<uint16_t> heat_settings =

toaster.getOneDRegisterAccessor<uint16_t>("HEATING_ARRAY");
ChimeraTK::OneDRegisterAccessor<uint8_t> thickness_sensors =

toaster.getOneDRegisterAccessor<uint8_t>("THICKNESS_SENSORS");

// Read the data from the thickness_scanner:
thickness_sensors.read();
// Set heating according to thickness:
for (std::size_t pos = 0; pos < heat_settings.getNElements(); ++pos) {

heat_settings[pos] = 200 + 10 * thickness_sensors[pos];
}
// Write the settings:
heat_settings.write()

DESY. | Extension of the Python Bindings for the ChimeraTK DeviceAccess Library | Christian Willner | Hamburg, 08.12.2022 Page 8

http://creativecommons.org/licenses/by/4.0/

Reading and Writing in Python

Python Bindings
heat_settings = toaster.getOneDRegisterAccessor(np.uint16, "HEATING_ARRAY")
thickness_sensors = toaster.getOneDRegisterAccessor(np.uint8, "THICKNESS_SENSORS")
thickness_sensors.read()
for pos, thickness in enumerate(thickness_sensors):

heat_settings[pos] = 200 + 10 * thickness

heat_settings.write()

DESY. | Extension of the Python Bindings for the ChimeraTK DeviceAccess Library | Christian Willner | Hamburg, 08.12.2022 Page 9

http://creativecommons.org/licenses/by/4.0/

New Python Accessors are NumPy Arrays

Python Bindings
heat_settings = toaster.getOneDRegisterAccessor(np.uint16, "HEATING_ARRAY")
thickness_sensors = toaster.getOneDRegisterAccessor(np.uint8, "THICKNESS_SENSORS")
thickness_sensors.read()
for pos, thickness in enumerate(thickness_sensors):

heat_settings[pos] = 200 + 10 * thickness

heat_settings.write()

DESY. | Extension of the Python Bindings for the ChimeraTK DeviceAccess Library | Christian Willner | Hamburg, 08.12.2022 Page 10

http://creativecommons.org/licenses/by/4.0/

Bindings Offer Blocking Reads

Assume the device 'toaster' has been opened
Prepare device via:
toaster.activateAsyncRead()
The accessMode is set as followed:
thickness_sensors =

toaster.getOneDRegisterAccessor(np.uint8,
"THICKNESS_SENSORS",
accessModeFlags=[da.AccessMode.wait_for_new_data])

First read is always non-blocking:
thickness_sensors.read()

while thickness_sensors.min() < 1:
thickness_sensors.read() # will now block until new data has been received

Afterwards the script can return as before to set the heating

Use cases
Blocking reads work for PCIe Interrupts, Publish/Subcribe protocols

DESY. | Extension of the Python Bindings for the ChimeraTK DeviceAccess Library | Christian Willner | Hamburg, 08.12.2022 Page 11

http://creativecommons.org/licenses/by/4.0/

Bindings Offer Blocking Reads

Assume the device 'toaster' has been opened
Prepare device via:
toaster.activateAsyncRead()
The accessMode is set as followed:
thickness_sensors =

toaster.getOneDRegisterAccessor(np.uint8,
"THICKNESS_SENSORS",
accessModeFlags=[da.AccessMode.wait_for_new_data])

First read is always non-blocking:
thickness_sensors.read()

while thickness_sensors.min() < 1:
thickness_sensors.read() # will now block until new data has been received

Afterwards the script can return as before to set the heating

Use cases
Blocking reads work for PCIe Interrupts, Publish/Subcribe protocols

DESY. | Extension of the Python Bindings for the ChimeraTK DeviceAccess Library | Christian Willner | Hamburg, 08.12.2022 Page 11

http://creativecommons.org/licenses/by/4.0/

Function Annotation and Type Hints

New Python bindings have complete coverage with type hints and annotations

DESY. | Extension of the Python Bindings for the ChimeraTK DeviceAccess Library | Christian Willner | Hamburg, 08.12.2022 Page 12

http://creativecommons.org/licenses/by/4.0/

Summary

> Python bindings usage closer to C++

> Almost complete coverage of C++ functionality

> Refactoring to facilitate future extensions

> Complete documentation

DESY. | Extension of the Python Bindings for the ChimeraTK DeviceAccess Library | Christian Willner | Hamburg, 08.12.2022 Page 13

http://creativecommons.org/licenses/by/4.0/

Outlook

> Continuous implementation of new functions from C++ base library

> Inclusion of (inefficient) comfort functions

> Diversion from explicit C++ workflow to be more Pythonic?

DESY. | Extension of the Python Bindings for the ChimeraTK DeviceAccess Library | Christian Willner | Hamburg, 08.12.2022 Page 14

http://creativecommons.org/licenses/by/4.0/

New Features in ChimeraTK DeviceAccess

> Userspace I/O backend (e.g. for SoC in Xilinx FPGAs)

> Double buffering plugin for continuous reads

and guaranteed consistency of buffers

> Tango ControlSystemAdapter in development by Soleil

> Yocto layer available for DeviceAccess and PythonBindings

ApplicationCore and ControlSystemAdapters will be available soon

DESY. | Extension of the Python Bindings for the ChimeraTK DeviceAccess Library | Christian Willner | Hamburg, 08.12.2022 Page 15

http://creativecommons.org/licenses/by/4.0/

Questions?

Contact

DESYª Deutsches Christian Willner

Elektronen-Synchrotron 0000-0002-2448-3698
MSK
christian.willner@desy.de

www.desy.de +49–40–8998–4904
DOI

DESY. | Extension of the Python Bindings for the ChimeraTK DeviceAccess Library | Christian Willner | Hamburg, 08.12.2022 Page 16

https://www.orcid.org/0000-0002-2448-3698
mailto:christian.willner@desy.de
https://doi.org/DOI
http://creativecommons.org/licenses/by/4.0/

