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What is Atom Computing?

2

Neutral Atom Startup Founded in 2018

● Based in Berkeley, CA
● Opened a second location

in Boulder, CO
● Satellite Offices in North Carolina

and Austin

Our goal: to develop neutral atoms trapped
in light as a highly-scalable, externally-
accessible platform for quantum
computing

● Pursuing gate-based, near-neighbor couplings 
● Focused on achieving capabilities and qubit numbers 

compatible with known error correction schemes
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LONG-TERM GOAL
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LARGE-SCALE QUANTUM COMPUTATION 
TOWARD

ERROR CORRECTION
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Quantum computing architectures
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Common ingredients regardless of underlying platform Quest for Qubits by Gabriel Popkin
Science 354, 1090 (2016)
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https://science.sciencemag.org/content/354/6316/1090/tab-figures-data
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Quantum computing architectures

UNIVERSAL GATE SET
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Quantum computing architectures
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Common ingredients regardless of underlying platform

◍ Tunable Rydberg-mediated 
interactions

Quest for Qubits by Gabriel Popkin
Science 354, 1090 (2016)

UNIVERSAL GATE SETHIGH-QUALITY 
QUBITS

SCALABLE TO MANY 
QUBITS

Superconducting 
loops

Diamond 
vacancies Trapped 
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Topological 
qubits Silicon 

quantum dots
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atoms

Relevant work includes: Browaeys, Endres, Greiner, Kaufman, Lukin, Pichler, Regal, Saffman, Thompson, Vuletic, Weiss

◍ Wireless control ◍ Long coherence times
◍ High-efficiency readout

https://science.sciencemag.org/content/354/6316/1090/tab-figures-data


1. Naturally identical and stable

2. Large qubit count

3. Wireless gates and position 
control

4. Strong interactions available 
for two-qubit gates

We use alkaline earth elements 
for naturally stable qubits
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Why Use Neutral Atoms?
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PHOENIX
OUR REAL-LIFE IMPLEMENTATION



100 QUBIT SYSTEM
PHOENIX
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What Are Neutral Atom Qubits?
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Optically-defined trapping
Scalable design with wireless control

14
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Set-up of holographic trap generation via 
Spatial Light Modulator (SLM)
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Optical tweezers scalable up to 100s of traps

Set-up of holographic trap generation via 
Spatial Light Modulator (SLM)

Schlosser, et. al, PRL (2002).
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Optical tweezers scalable up to 100s of traps

Set-up of holographic trap generation via 
Spatial Light Modulator (SLM)

Schlosser, et. al, PRL (2002).
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Optically-defined trapping
Scalable design with wireless control
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Optical tweezers scalable up to 100s of traps

Set-up of holographic trap generation via 
Spatial Light Modulator (SLM)

Single moving tweezer is able to fill vacancies; process 
referred to as rearrangement.

Schlosser, et. al, PRL (2002).
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Atom Readout Via Imaging

Fluorescence

Trapped atoms

Camera

Microscope 
objective

Imaging lens

Average of 100 images



Anatomy of Our Quantum Computer
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All data, charts, graphics, insights are copyrighted by Interference Advisors LLC and provided under exclusive license to the client. This presentation or any part thereof may not be reproduced or shared beyond the intended client, publicly 
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How to Rearrange Atoms in 2D

21

Diagram from: Regal Lab (JILA)

Diagram from Nature Comms 13317

Jaewook Ahn

Browaeys + Others
Weiss + Others

Shuffling / State Dependent Lattices

Spatial Light Modulators 
(SLMs)

Acousto-optic 
deflectors 
(AODs)
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Autonomous Rearrangement
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The system must make its own decisions about which moves to play in order to 
achieve a desired target pattern

Use the “Compression Algorithm” to efficiently 
fill a compact array and avoid collisions

Schymik, Kai-Niklas, et al. "Enhanced atom-by-atom assembly of 
arbitrary tweezer arrays." Physical Review A 102.6 (2020): 063107.
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The Qubit is “Inside” the Atom
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Benefits of alkaline earth atoms (2-valence electron atoms):

◍ Rich level structure: multiple long-lived excited states, 
variety of optical transitions & variety of linewidths

◎ Trapped Rydberg states
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The Qubit is “Inside” the Atom
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mF levels for 1S0 and 3P1
Benefits of alkaline earth atoms (2-valence electron atoms):

◍ Rich level structure: multiple long-lived excited states, 
variety of optical transitions & variety of linewidths

◎ Trapped Rydberg states
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Wireless control
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Spin selective readout utilizes clock-state 
(3P0-manifold) in 2-step process:

Shelving references: Nagourney, PRL (1986), Sauter, PRL (1986).

Nuclear spin readout

1P1

3P0

3P1

1S0 

461-nm

69
8-

n
m
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Spin selective readout utilizes clock-state 
(3P0-manifold) in 2-step process:

Shelving references: Nagourney, PRL (1986), Sauter, PRL (1986).

Nuclear spin readout
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1. Shelve the |0> or |1> 
population into 3P0, F=9/2

Single-site photon counts

2. Apply imaging light resonant 
with ground state.
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Spin selective readout utilizes clock-state 
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Wireless control
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Spin selective readout utilizes clock-state 
(3P0-manifold) in 2-step process:

Shelving references: Nagourney, PRL (1986), Sauter, PRL (1986).
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Single-Qubit Manipulations in 87Sr
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...

 

● Qubit encoded in mF = -9/2, -7/2 nuclear 
spin in ground state.

● 1Q gates actuated by 2-photon transition.

● Avoid “leakage” to other nuclear spin 
states using a Stark shift beam.

...

Stark shifting

qubit

mF = -9/2
mF = -7/2

~200
MHz

68
9 

n
m

mF = -5/2

5 MHz

3P1 States

1S0 Ground States: 
2 kHz splitting

©2022 Atom Computing.  All rights reserved. 

Leakage Qubit
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But will the qubit be stable?

• Motional Decoherence?

• Scattering?

• Does everything in nature just drive this 
super-low-frequency qubit?
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Motional Decoherence in Neutral Atoms
• Different electronic states see different trap 

potentials except at a magic wavelength 
where the energy difference between the 
two electronic states is identical everywhere 
in the trap.

• However...we’re not talking about optical 
qubits today, instead we are talking about 1S0 
atoms in different mF states:

Ye / Katori
Let’s Google for our favorite PDF describing polarizability (i.e. 
Rauschenbeutel)

● J = 0 
○ No Vector or Tensor Shift! Don’t have to worry about mixing 

different F States
● In this far off resonance simplification, F is the same for the two states! 

Scalar polarizabilities are equal! (more discussion to come)



©2021 Atom Computing. All rights reserved. 

Scattering

Rayleigh scattering does not cause 
decoherence IFF:

● The Amplitudes of the the Rayleigh 
scattering rates for each qubit state 
are the same.

● Here again we are winning because 
the qubits are so close in energy 
space that their scattering amplitudes 
are nearly identical when illuminated 
with off-resonant light.

Rayleigh Raman

Fundamentally, the 
optical dipole matrix 
element couples to L 
and in AE-like 
elements these are 
fundamentally 
decoupled from I, 
when detuning is 
larger than the HFS
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Why does every laser not just drive this qubit?

Let’s try and drive a two-photon 
transition!

1S0 F = 9/2

3P1 F = 11/2

3P1 F = 9/2

3P1 F = 7/2

-9/2 -7/2 -5/2 -3/2 -1/2 1/2 3/2 5/2 7/2 9/2

Δ = 0

Let’s make it far off resonance, i.e Δ >> Ei

Who doesn’t love CG identities...

Ωeff ~ 1 / Δ2 when detuned 
farther than the HFS!
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e-

e-

Ben’s idea of what this Qubit is like...

Noise!

Qubit

THE QUBIT IS INSIDE THE ATOM
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Single-Qubit Manipulations
Wireless control

35
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Driving each qubit independently, columns in parallel

“T1” Measurement

36

Qubit a
rray

Nuclear-spin qubit! Neutral atom hyperfine qubit

GVLArXiv: 2110.14645

©2022 Atom Computing.  All rights reserved. 
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T2 Measurement
Qubit characterization
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X90 I (tR) |0⦒ X90Z(ɸi) Z(2πfitR) 

Ramsey circuit:

Qubit-specific combination of static phase ɸi and 
artificial detuning fi.

T2
* ~ 21 ± 7 seconds 

Time [seconds]

P
op

u
la

ti
on

 in
 |-

7/
2〉

Ramsey Measurement
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T2 Measurement
Qubit characterization
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X90 I (TRAMSEY) |0⦒ X90(ɸ)X180 I (TRAMSEY)Ramsey-echo circuit:
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T2 Measurement
Qubit characterization
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Ramsey-echo circuit: X90 I (TRAMSEY) |0⦒ X90(ɸ)X180 I (TRAMSEY)

T2
ECHO ~ 42 ± 6 seconds 
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FROM QUBITS TO QUANTUM COMPUTING
SOFTWARE & AUTOMATION
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Circuit description in Qlingon
circuit = [X90(1) * Y90(2) * X90(3),

     I,
     Z(1) * Z(2) * Z(3),
     X90(1) * X90(3)]

Qlingon 
Language

Qlingon 
Compiler Qlingon compilation 

generates pulse sequences corresponding to the circuit
program = qlingon_compiler(backend, circuit)

3rd Party PyGSTi ...

Execution 
Orchestrator Pulses are played on instrument channels to execute the 

quantum gates on trapped atoms

H
ar

d
w

ar
e-

ag
n

os
ti

c

Software-hardware interface

High-level experiment description

Qlingon: A Language for 
Specifying Quantum Circuits

X90ZIX90

ZIY90

X90ZIX90
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Driving Specific Qubits
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● Driving each qubit independently.

● Choose which sites, what phase, 
and what amplitude to drive.

Qubit a
rray

©2022 Atom Computing.  All rights reserved. 
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Single qubit gate fidelity
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Randomized Benchmarking and Gate Set Tomography (GST) 

 
Fidelity > 0.99 

* averaging a subset (#21 atoms)
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Single qubit gate fidelity
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Randomized Benchmarking and Gate Set Tomography (GST) 

 

E. Nielsen et. al. Quantum 5, 557 (2012)

Fidelity > 0.99 

* averaging a subset (#21 atoms)

** averaging a subset (#10 atoms)
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Single qubit gate fidelity
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Randomized Benchmarking and Gate Set Tomography (GST) 

 

Can we have better gates?
We are mainly limited by coherent 
errors -detuning and gate duration. 
Next steps to reduce errors and increase 
array uniformity:

● Pulse shaping
● Composite pulsed
● Faster gates E. Nielsen et. al. Quantum 5, 557 (2012)

Fidelity > 0.99 

* averaging a subset (#21 atoms)

** averaging a subset (#10 atoms)
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Gates with Single-Site Addressing
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Rydberg-Rydberg Mediated 2Q Gates

Morgado et al, ArXiv: 2011.03.031

|gr>|rg>

|gg>

|rr>
B ~ 10-1000 MHz
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2q gate
Addressing scheme

4 μm ~ 1.25 MHz

1S0  mF = -9/2 -7/2

Δ

60 3S1  11/2, -11/2

689 nm

318 nm

3P111/2, -11/2
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Addressing scheme
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2q gate:
ingredients

Coherent Rabi oscillation
● Single atom
● Blockaded Oscillation
● Rydberg-Rydberg Population

[Levine, … Lukin, PRL 123(17) 170503]

CZ:
|00⟩ → |00⟩
|0 1⟩ → ei𝜙01|0 1⟩
|1 0⟩ → ei𝜙10|1 0⟩
|1  1⟩ → ei𝜙11 |1  1⟩
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OUTLOOK
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A Look at What Our Competitors Are Saying…

52

A wave of interest, 
development, and 
investment started for 
Neutral Atom Computing.

©2022 Atom Computing.  All rights reserved. 

1S0  mF = -9/2-7/2 -5/2

Δ

...

|R〉= Rydberg state
n = 60 3S1  mF = -11/2

689 
nm

317 nm

computational 
basis

|G〉=
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In the last Year…
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● Long lived (many second) bell states 
using strontium - Kaufman

● The debut of two Yb platforms with 
○ Universal gate sets - Thompson
○ 150 ns 1Q gates - Kaufman

● A full platform for running higher 
connectivity circuits through mid-circuit 
atom rearrangement including Toric 
codes, surface codes, etc etc - Greiner, 
Vuletic, Lukin

Neutral Atom Quantum Computers are entering the scene.

We’ve seen

Kaufman
GVL
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Contact us:

CTO

bbloom@atom-computing.com

BENJAMIN BLOOM
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Thank you!

57©2022 Atom Computing.  All rights reserved. 


