Methodology Of Life Cycle Assessment For The Electronics Industry

Creating sustainable impact

About Me

Managing sustainability and environment for the last 18 years in global chemical, electronics and energy industries

Owner of **Enviroet GmbH** providing a holistic approach for sustainability solutions and strategic plans to support acceleration of our journey to carbon neutrality

Conducting LCAs and EPDs over the last 5 years

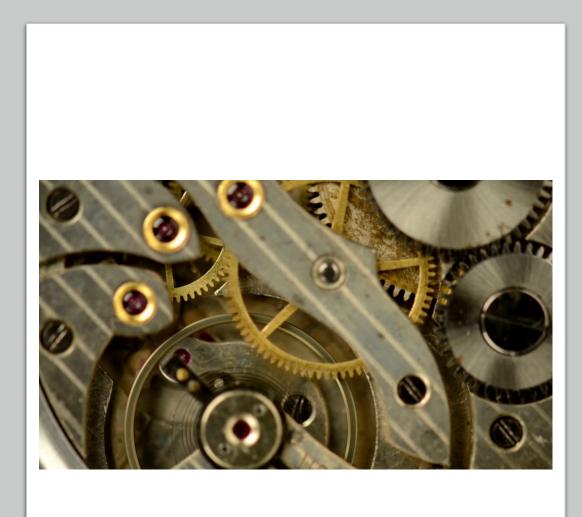
enviroet Creating sustainable impact Approved Life Cycle Assessment

ISO 14040

Today we will understand

BASICS OF A LIFE CYCLE ASSESSMENT METHODOLOGY

ECO INDICATORS


EPD - ENVIRONMENTAL PRODUCT DECLARATION

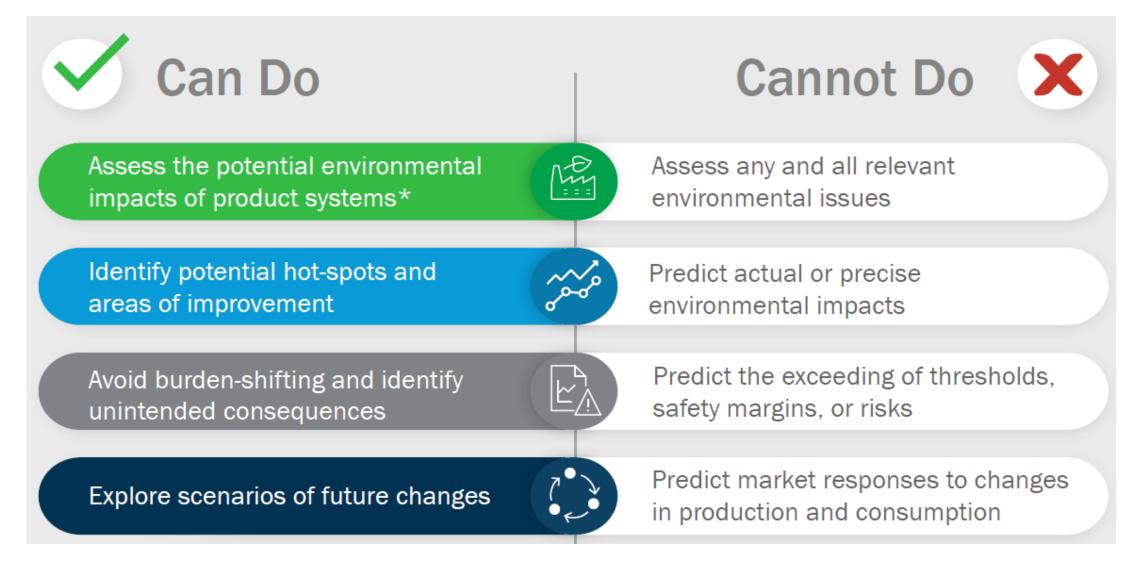
LCA IN THE ELECTRONIC INDUSTRY – STUDY CASE

REE LCIA – RARE EARTH ELEMENTS LIFE CYCLE IMPACT ASSESSMENT

Basics of a Life Cycle Assessment Methodology

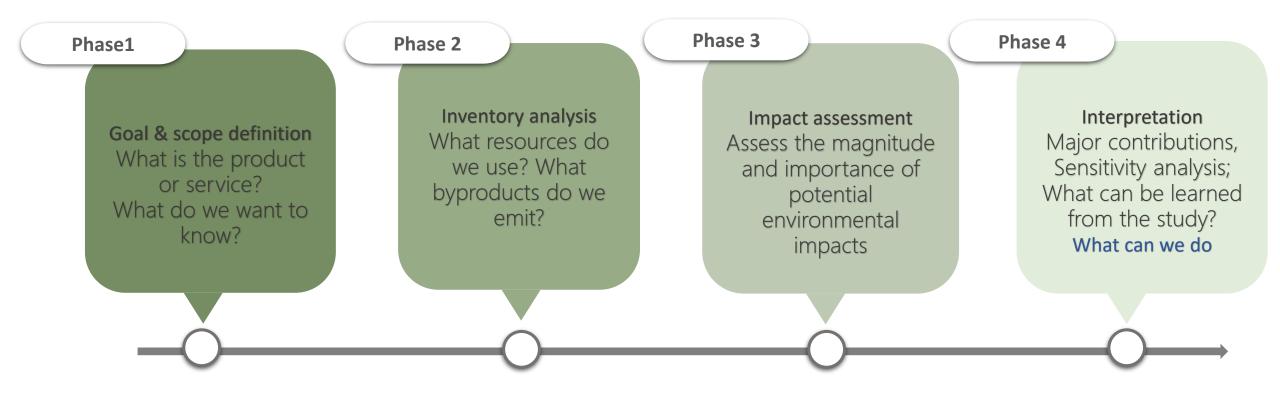
Main LCA Reporting Standards

- ISO. (2006). <u>ISO 14044</u>: Environmental management Life cycle assessment Requirements and guidelines
- ISO. (2009). <u>ISO 14040</u>: Environmental management Life cycle assessment principles and frameworks
- ISO 14067 on the carbon footprint of products
- ISO 14020, ISO 14021, ISO 14024, ISO 14025, and ISO 14026 on environmental labels
- ILCD (EU) on life cycle assessment
- PAS 2050 (UK) on greenhouse gas emissions
- BP X30-323 (France) on environmental foot printing
- EcoLeaf Environmental Labeling Program (Japan)
- Carbon Footprint of Products and Environmental Product Declaration (Korea)


What is LCA?

LCA is a methodology to assess the potential environmental impacts of products, systems, or service at all stages in their life cycle

Capabilities and Limitations of LCA

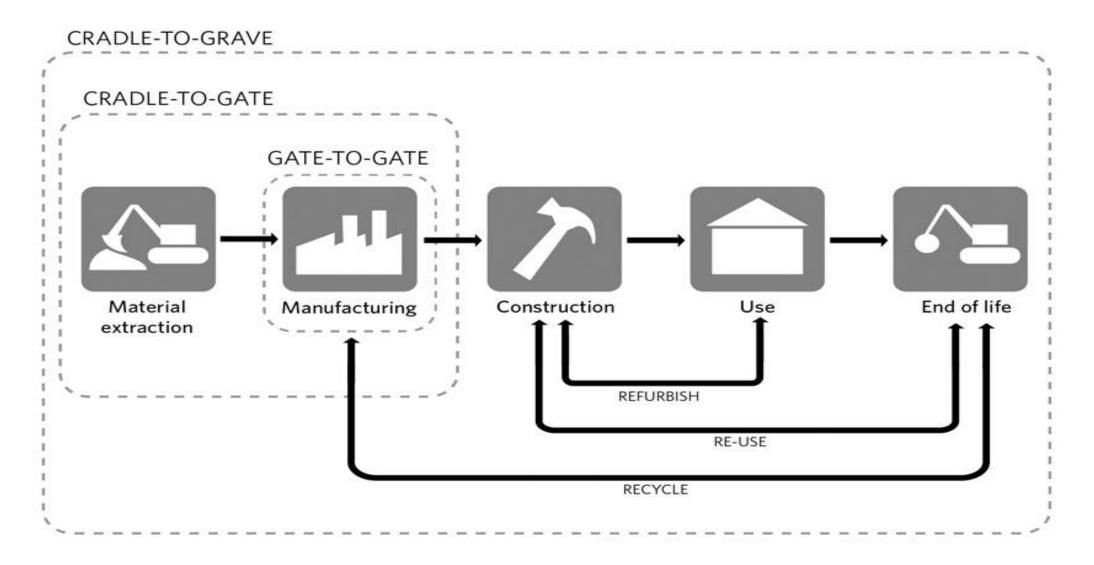

enviroet

*Limited by availability of data and methodology

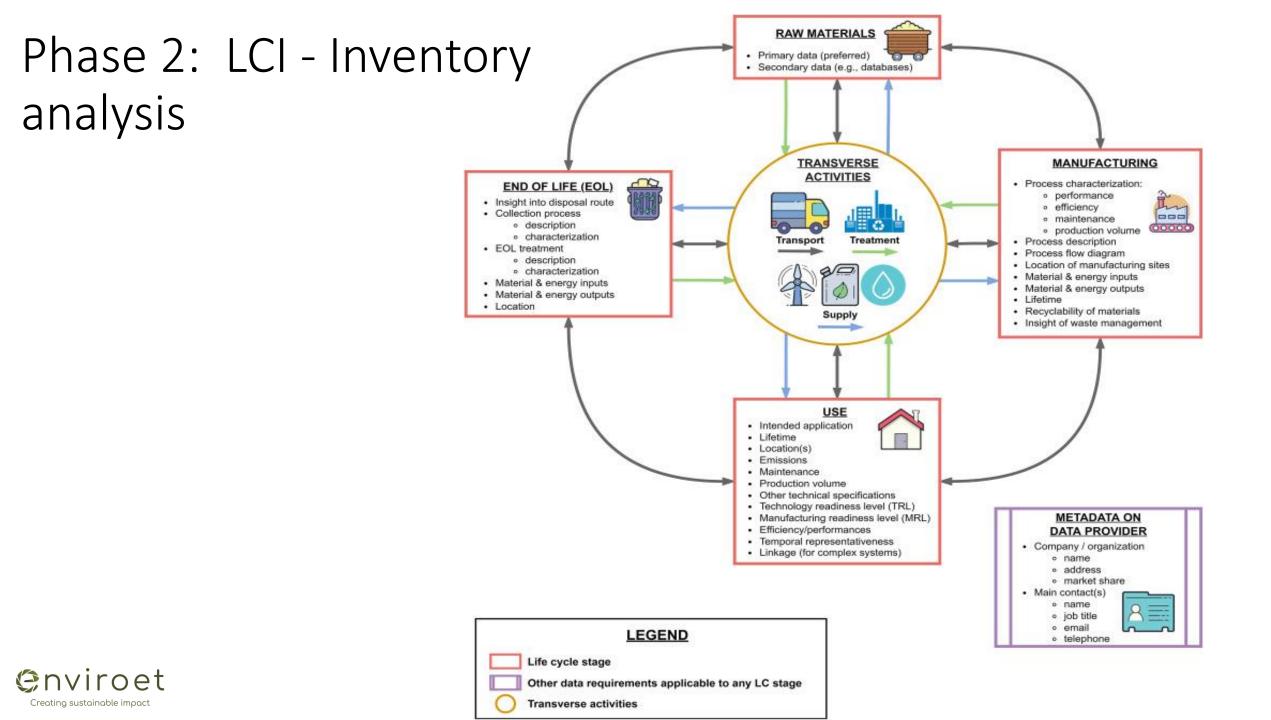
Phases of an LCA study

Phase 1: Scope definition of the LCA study

Geographical scope


Production phase: Country. Manufacturing & Distribution center: Country Functional unit 1 kg /1 Unit/1 MJ of material used.

System boundary


"Cradle-to-grave" -All processes from extraction of natural resources to the disposal of the product

Boundaries system

Eco Indicators

Phase 3: Impact assessment

Climate Change

Global warming potential (GWP)

Acidification of Land and Water Resources

Acidification potential (AP)

Eutrophication

Eutrophication potential (EP)

Formation of Photochemical Oxidants

Photochemical oxidant formation potential (POFP)

Use of Energy and Resources

1- Abiotic depletion potential (ADP Elements)
 2- Abiotic depletion potential (ADP Fossil)
 3- Water scarcity footprint (WSF)

The **heat** absorbed by any **greenhouse gas** in the **atmosphere.** GWP-fossil GWP-biogenic GWP-land use GWP- Total

Affects aquatic and terrestrial ecosystems by changing the acid-basicbalance

The **excessive** supply of **nutrients** and can apply to both **surface** waters and soils

- Freshwater
- Marine

• Terrestrial

also known as smog is the photochemical creation of reactive substances (mainly ozone) represents the extraction of natural elements from earth
 represents the use of fossilbased energy.
 used to measure the amount of water utilized

CML 2001-2016

Indicator	<u>Unit</u>
GWP-total	kg CO ₂ eq.
GWP-fossil	kg CO ₂ eq.
GWP-biogenic	kg CO ₂ eq.
GWP-luluc	kg CO ₂ eq.
ODP	kg CFC 11 eq.
AP	mol H+ eq.
EP-freshwater	kg P eq.
EP-freshwater	kg N eq.
EP-terrestrial	mol N eq.
РОСР	kg NMVOC eq.
ADP-	kg Sb eq.
minerals&metals	ng Ju cy.
ADP-fossil	MJ
WDP	m3

Life Cycle Impact Assessment (LCIA) methods

<u>CML</u> (Used worldwide - except North America) from the Institute of Environmental Sciences of the University of Leiden in the Netherlands. Required by the European EN 15978 and EN 15804 standards

TRACI (Used in North America)

stands for Tool for the Reduction and Assessment of Chemical and other environmental Impacts. It is a method published by the U-S-Environmental Protection Agency (US EPA)

<u>PEF</u> (Used worldwide - except North America) EN15804 standard became mandatory in July 2022. Environmental Product Declaration (EPD)

<u>ReCiPe</u> (Used in Europe)

Developed by the Dutch research institute of RIVM (National Institute for Public Health and the Environment), Radboud University Nijmegen, Leiden University and Pré Consultants in 2008.

Which is the most important environmental impact indicator?

- Analogous to nutrition information.
- Are biscuits with low fat, low sugar or high protein the healthiest?
- Different people will focus on different things depending on their health needs.
- It is the same for environmental impacts. Different industries focus on different problem areas.
- All are important!

viroet

Creating sustainable impac

EPD – Environmental Product Declaration

EPD – Environmental product declaration

An EPD is a **declaration document** that discloses the life cycle **environmental performance** of **products** and **services** during their **life cycle**.

What part of my product is included in an EPD?

EPDs look at the full life cycle of the product or service, from cradle to grave.

Details of A, B, C and D modules

	roduo stage		Asse sta				Us	e sta	ge			End of life stage			age	Benefits & loads beyond system boundary
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy	Operational water	De-construction	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling-potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D

LCA for Meter Connectivity Module

LCA for Meter Connectivity Module

- Understand the environmental impacts of their products and make this information publicly available as an EPD (Environmental Product Declaration).
- The aim of the LCA report is to specify all environmental impacts downstream and upstream through all life cycle of the production of the product - workplan to reduce the environmental impacts

Steps Involved in Completing a LCA Study

Initiate

- Planning
- Kick off meeting
- Definition system boundary, functional unit, allocation, etc.
- Project timeline and roles

Data Collection

- Finalization and distribution of data collection questionnaires
- Recurring check-ins

Data Quality Checks

- Validation of data for completeness & accuracy
- Filling of data gaps
- Benchmarking

Modeling & Analysis

- Create LCA models in GaBi software
- Allocation
- Inventory analysis
- Impact assessment
- Results presentation

Reporting

- Create draft thirdparty report (ISO 14044, clause 5)
- Incorporate Client feedback

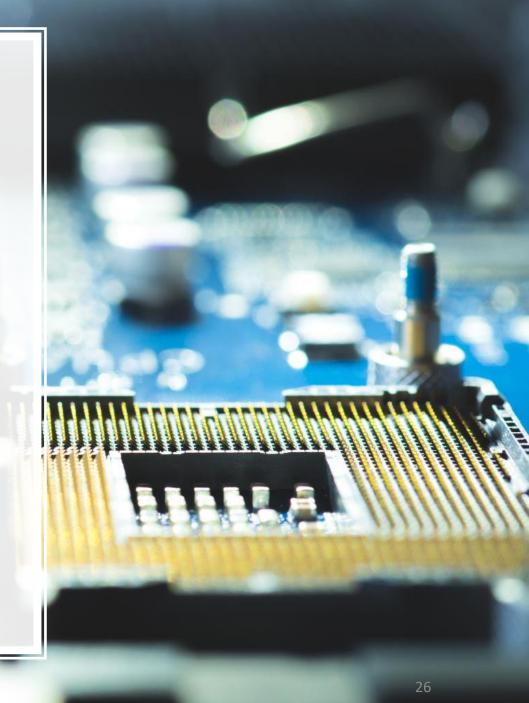
- Critical review in
- Critical review in accordance with ISO 14044, clause 6

Data collection

- BOM Materials
- BOM Packaging
- Energy Consumption
- Distances
- Distribution Logistics
- Calculation for 1 FU (functional unit)

*BOM (Bill Of Material)

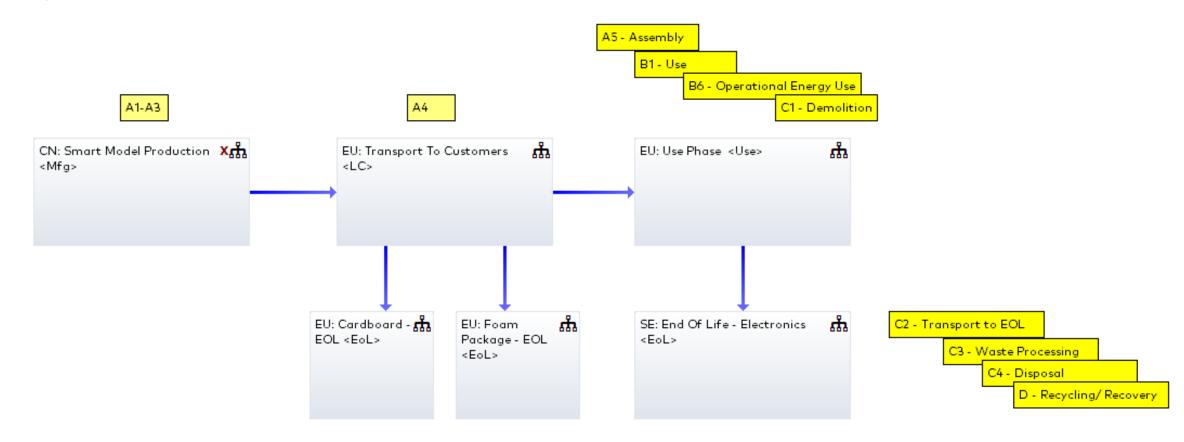
Product specification

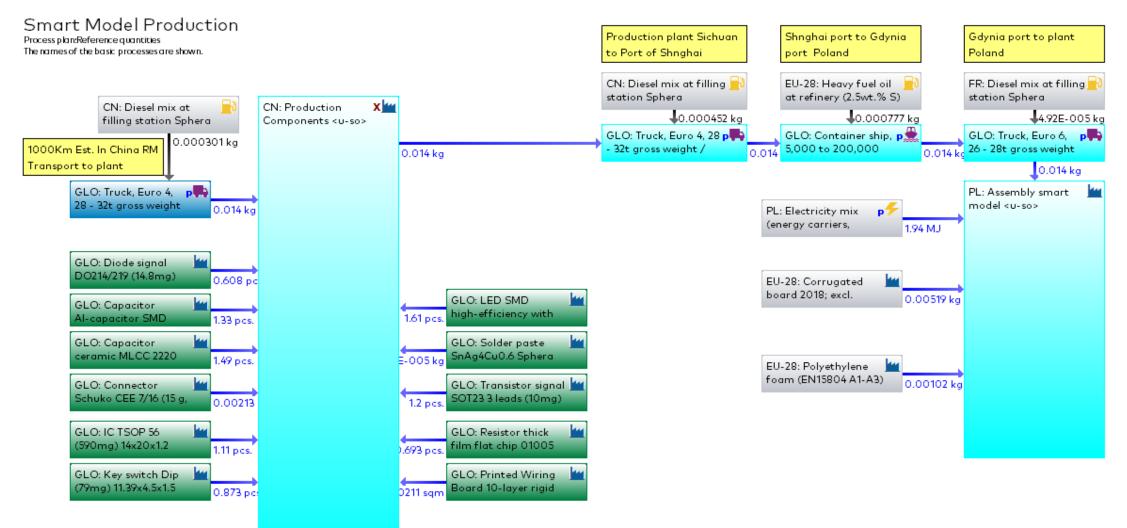

Product components	Weight, g	Weight-% (versus the product)
РСВ	8.3	58.00
Connector	2.13	14.88
NB-IoT modem	1.124	7.85
Capacitor	0.6688	4.67
Flash	0.653	4.56
Header	0.586	4.10
MAHDA	0.13	0.91
Led	0.096	0.67
Solder Paste	0.09	0.63
Load Switch	0.069	0.48
IC TRNSLTR	0.04	0.28
Inverter	0.02	0.14
Transistor	0.012	0.08
Resistor	0.0104	0.07
Diode	0.009	0.06
Clamp for SIM Card Interface	0.007	0.05
Power, Signal Line Ferrite Bead	0.004	0.03
NFC Forum Type	0.0034	0.02
ESD Suppressor	0.0002	0.00
TOTAL	14.01	
Packaging materials	Weight, g	Weight-% (versus the Packed product)
Cardboard	5.19	25.71
Foam - Expanded Polyethylene	1.02	5.07
TOTAL	6.21	24

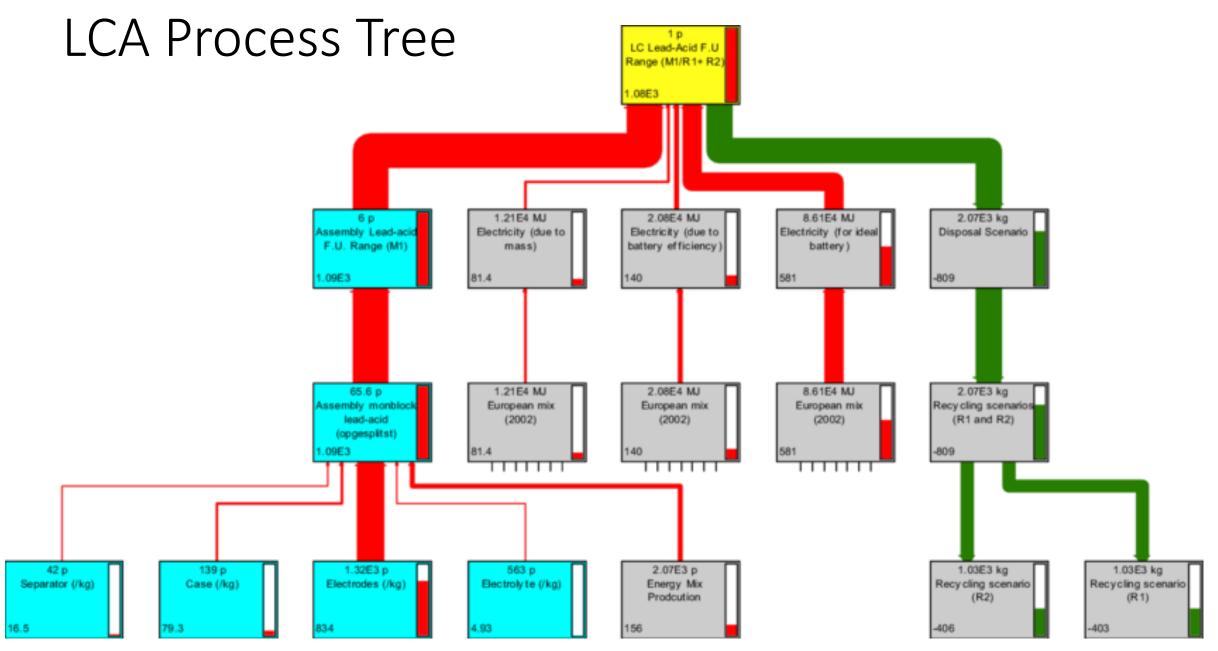
System Phases and Boundaries

A1-A3 Manufact	uring		A4 Transport					
Components Manufacturing	Circuit board Assembly	Test and inspection	Packaging	Transport to Warehouse	Inbound goods	Transport to Customers		
Various Sites in China	Incoming inspection (components) Screen-printing Pick and place Reflow soldering Hand mounting Optical inspection	Programming Visual inspection Functional inspection Rework	Carton, ESD foam	Road transport from Poland to Sweden	Incoming inspection Storage	Road transport to Germany and Sweden		
A5 Install	B1, B6, C1 Use	<u>Phase</u>		C2-C4, D End C	<u>Df Life</u>			
Install Smart Model in meter	B1 Use Phase	B6 Operational Use	C1 Demolition	C2 Transport of Waste	C3 Waste Processing	C4 Disposal	D Recov Recycli	
Install MCM in meter	Meter Connectivity Module in Meter	Meter Connectivity Module in Meter RSL -10 years	Disassemble of the Meter Connectivity Module	Transport of Electronic waste and Packaging	Waste Processing Cardboard and Foam packaging	Disposal of Electronic waste and Packaging	Recycling of Cardboard a Electronic W	

Database and PCR (Product Category Rules)

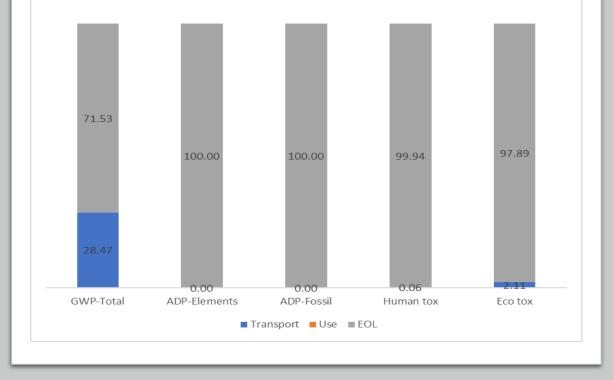

- Database at GaBi LCA software Extension Electronics and ECOINVENT 3.8
- Decide on the available relevant Product Category Rule – PCR at EPDItaly
 - PCR EPDitaly007 Electronic and Electrical Products and Systems
 - Sub PCR EPDitaly011 Electronic and Electrical Products and Systems - Meters


Overall plan - LCA Modelling on GaBi software

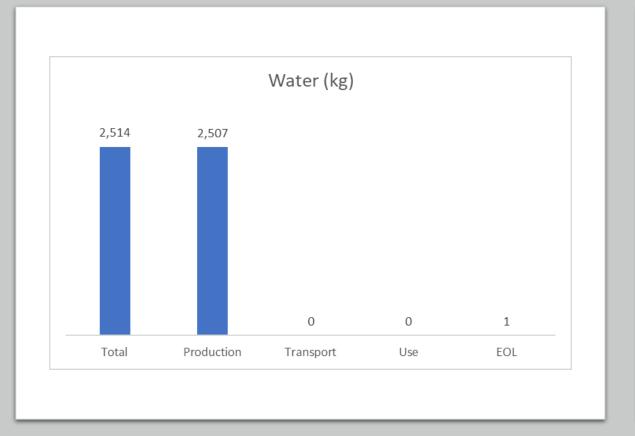

Smart Model LCA Cradel To Grave

Process plan:Reference quantities The names of the basic processes are shown.

Production Process

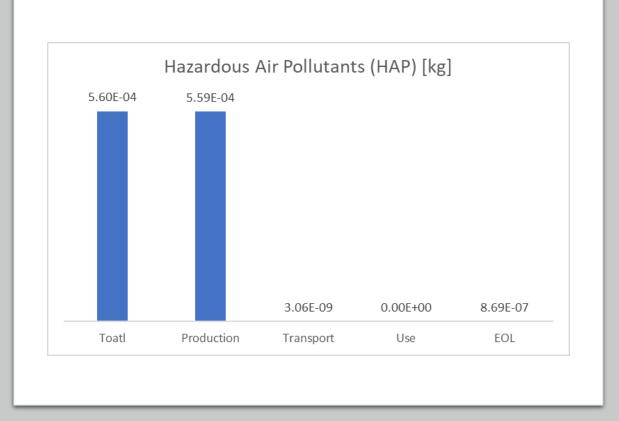


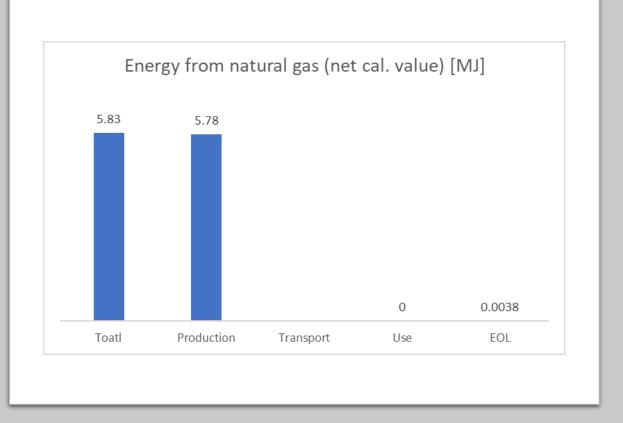
0.57 0,00 0,03 0,04 0.23 0,00 0,00 0,17 0.24 00,00 99,97 99,96 99,83 99.2 100,00 99,97 99,96 99,83 GWP-Total ADP-Elements ADP-Fossil Human tox Eco tox Environmental Impacts at Process Stages - Production - Transport - EOL


Environmental impacts (%) at all process stages

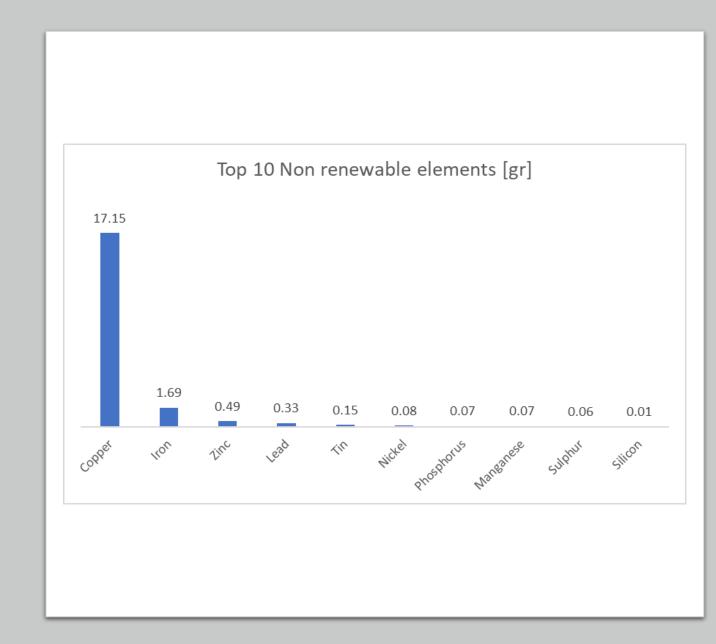
Environmental impacts (%) excluding production stage

Results of 1 unit at process stages





Results of 1 unit at process stages

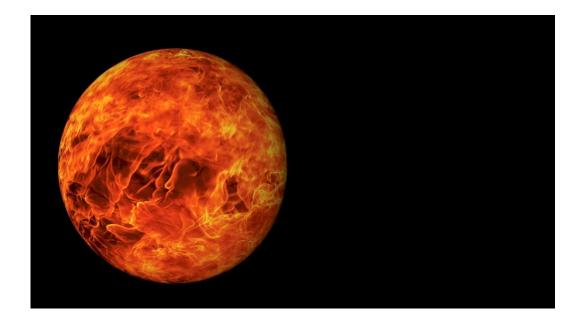


Results of 1 unit at process stages

Results of 1 unit at process stages

Main Interpretations

- Raw materials in supply stage account for around 95-99% of the total impacts
- The EOL (End Of Life) stage is second most important with 99% of all environmental impacts occurring then. Only at the GWP, transportation percentage increases to 28% and EOL is 71%.
- The total GWP value is 2.53 kg CO₂ eq. per product. For 1 year of production of 1 unit there are 253 tons of CO₂
- The total water use is 2,514 kg per product. For 1 year of production of 1 unit there are 251,400 tons of water


Main Recommendations

Change transportation route - using direct route from Poland to Germany

Decrease Polyethylene packaging

- Reduce using 50% less foam packaging per product
- Reuse foam packaging for at least 4 times
- Replace the foam packaging with recycled plastic

Every change to the weight of the components will have huge effects on all environmental impact especially at **PCB**, **Modem**, **Flash components**

Environmental impact categories of REE

Results of weighted environmental impact categories of extraction, processing, and production 1 Kg of each REE

Abiotic Depletion (fossil)
Abiotic Depletion (elements)
Global Warming Potential
Terrestric Ecotoxicity Potential
Freshwater Aquatic Ecotoxicity Poter
Eutrophication Potential
Acidification Potential
Human Toxicity Potential

Unit

kg Sb-Eq

kg SO2-Eq

kg Phospha

kg DCB-Eg

kg CO₂-Eq

ka DCB-Ea

kg DCB-Eg

6.8

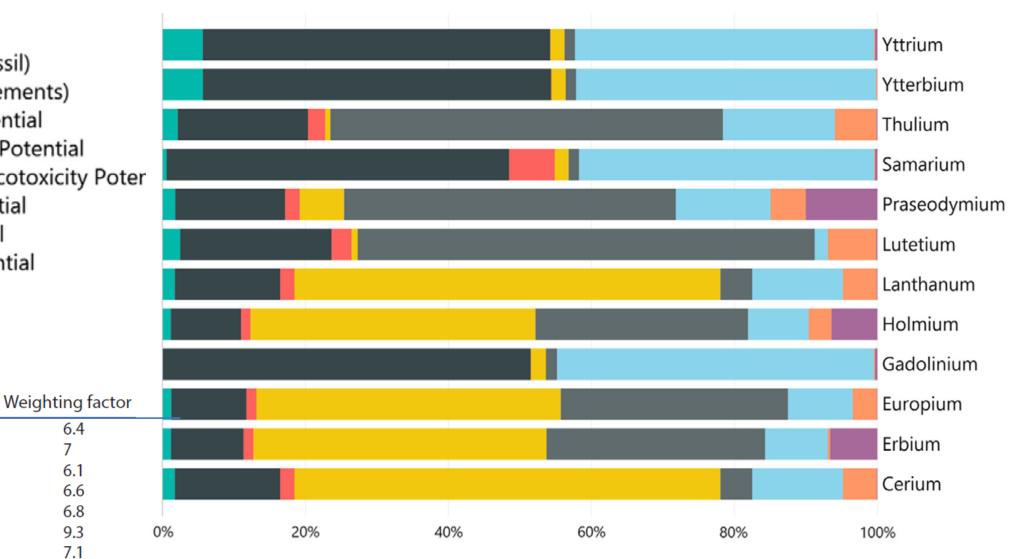
MJ

Impact categories

ADE

ADF

AP

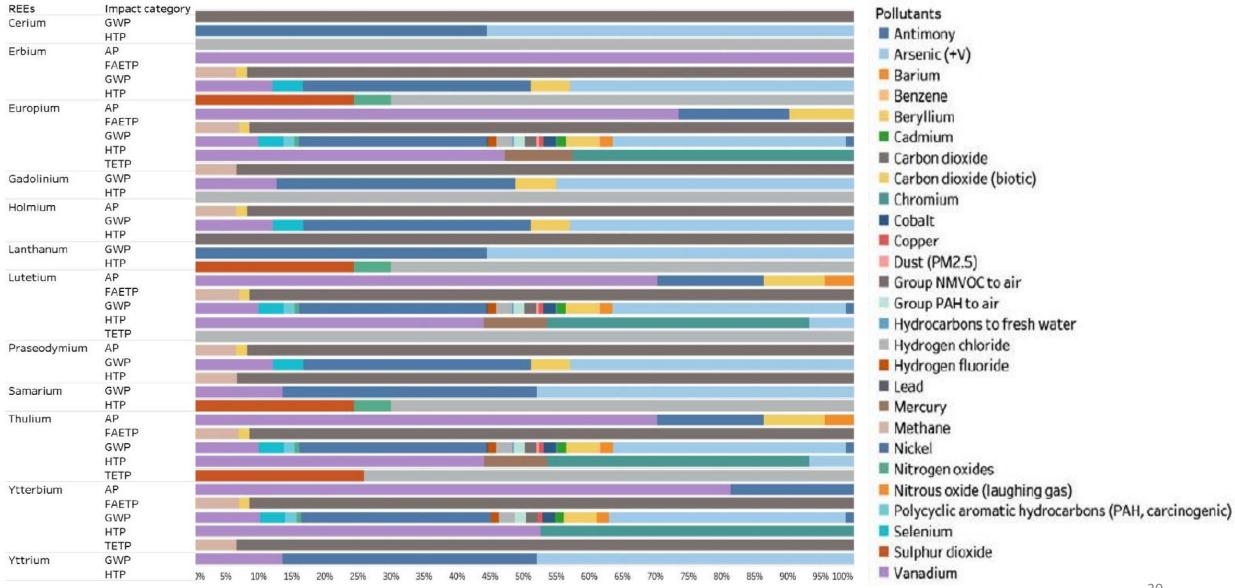

EP

FAETP

GWP

HTP

TETP


CML 2001 impact categories of **REEs** expressed in kg-Eq per functional unit

	REEs											
Impact categories	Cerium	Erbium	Europium	Gadolinium	Holmium	Lanthanum	Lutetium	Praseodym- ium	Samarium	Thulium	Ytterbium	Yttrium
ADE	1.23E-05	8.62E-05	1. 16E-03	5.55E-05	7.51E-05	1.23E-05	1.57E-03	7.40E-05	2.97E-05	1.59E-03	4.76E-04	4.34E-05
AD F	1.38E+02	9.62E+02	1.30E+04	6.20E+02	8.39E+02	1.38E+02	1.76E+04	8.26E+02	3.31E+02	1.78E+04	5.31E+03	4.84E+02
AP	2.75E-01	1.92E+00	2.59E+01	1.24E+00	1.67E+00	2.75E-01	3.51E+01	1.65E+00	6.61E-01	3.55E+01	1.06E+01	9.66E-01
EP	4.51E-03	3.15E-02	4.26E-01	2.03E-02	2.75E-02	4.51E-03	5.76E-01	2,70E-02	1.08E-02	5.83E-01	1.74E-01	1.59E-02
FAETP	2.29E-01	1.60E+00	2.16E+01	1.03E+00	1.40E+00	2.29E-01	2.93E+01	1.37E+00	5.51E-01	2.96E+01	8.83E+00	8.05E-01
GWP	1.32E+01	9.24E+01	1.25E+03	5.95E+01	8.06E+01	1.32E+01	1.69E+03	7.93E+01	3.18E+01	1.71E+03	5.10E+02	4.65E+01
HTP	5.18E+00	3.62E+01	4.89E+02	233E+01	3.15E+01	5.18E+00	6.61E+02	3.11E+01	1.25E+01	6.69E+02	2.00E+02	1.82E+01
TETP	1.42E-01	9.90E-01	1.34E+01	6.38E-01	8.64E-01	1.42E-01	1.81E+01	8.50E-01	3.41E-01	1.83E+01	5.47E+00	4.98E-01

CML 2001 impact categories of **non-REEs** expressed in kg-Eq per functional unit.

			Base metals		Precious metals						
Impact categories	Aluminium	Copper	Steel	Nickel	Zinc	Gold	Palladium	Platinum	Rhodium	Silver	
ADE	4.07E-06	8.42E-03	2.28E-05	2.12E-05	1.22E+00	5.20E+01	4.92E-01	2.14E+00	5.05E+00	8.19E-02	
ADF	1.05E+02	4.69E+01	2.51E+01	1.56E+02	3.04E+04	6.29E+05	1.44E+05	4.47E+05	9.83E+05	4.66E+03	
AF	3.51E-02	2.10E-02	7.31E-03	1.05E-01	2.16E+01	6.07E+02	1.94E+02	5.75E+02	1.25E+03	8.29E+00	
EP	2.37E-03	1.67E-03	6.46E-04	3.49E-03	2.39E+00	4.19E+01	7.10E+00	2.33E+01	5.21E+01	1.07 E-0 1	
FAETP	5.69E-02	1.60E-01	4.40E-03	1.42E+00	1.09E+02	6.63E+01	3.43E+02	4.77E+02	7.27E+02	3.06E+00	
GWP	9.62E+00	3.69E+00	2.21E+00	1.30E+01	3.13E+03	6.16E+04	1.23E+04	4.24E+04	9.56E+04	3.36E+02	
HTP	3.29E+01	3.33E+00	2.47E-01	6.25E+01	4.78E+03	4.45E+03	1.05E+04	1.57E+04	2.54E+04	8.61E+02	
GWP	1.56E-02	1.69E-02	1.20E-02	2.98E-01	2.40E+01	7.53E+01	1.06E+02	1.73E+02	2.97E+02	6.30E+00	

The major emissions that contribute to AP, FAETP, GWP, HTP, and TET P for each REE. Percentage of emissions measured in kg-eq greater than 1 kg-eq.

REE Environmental impact categories

- Environmental loads associated with the production of REEs, which might help provide a baseline for cleaner production, alternative metal choices, and advances in technologies for primary metal production.
- The results show that the worst weighted environmental impacts are those from the production of gadolinium, yttrium, cerium, lanthanum, and samarium. The production of lutetium and thulium has the lowest impacts of the REEs examined.
- The most significant emissions for all REEs are radium, carbon dioxide, and chloride.
- The greatest heavy metal emissions from the REEs are manganese, tin, copper, vanadium, zinc, and nickel.

Sources

- LCA for Meter Connectivity Module Done by Amit Lotan 'Enviroet GmbH'
- Impact Assessment Methods and Categories Ecoinvent website: <u>https://ecoinvent.org/</u>
- Environmental impact categories of REE Mahdi Ikhlayel (2017)
 Evaluation of the environmental impacts of rare earth elements production, International Journal of Environmental Studies. link to this article:

https://doi.org/10.1080/00207233.2017.1341737

https://enviroet.com/

amitlotan@enviroet.com

