
Sensitive Detector & Hits
A. Schälicke

(based on slides by A. Dotti)

Collecting Information

User Action allow to interact with the simulation
of the physics and collect information for analysis

Hits simplify the job in collecting information for
active parts of the detector

Hits are created only for the pieces of the detector
that are defined sensitive: SensitiveDetector.

Example: in a Sandwich-Calorimeter the SD is the
active layer

2

Sensitive Detector

Each logical volume can have an associated SD: a user-defined
class derived from G4VSensitiveDetector

SDs must have a unique name, however the same SD can be
shared between different logical volumes. In our exercise, the
same SD is shared between all active layers of the calorimeter.

SD is created and associated to detector planes in
DetectorConstruction class in Construct method.

 sensitive= new ScintillatorSD("/myDet/Adsorber");
 G4SDManager::GetSDMpointer()->AddNewDetector(sensitive);
 //needed to garantee calls to Initialize and EndOfEvent methods!

 logicScintillator->SetSensitiveDetector(sensitive);

Sensitive Detector

Sensitive Detector

Each logical volume can have an associated SD: a user-defined
class derived from G4VSensitiveDetector

SDs must have a unique name, however the same SD can be
shared between different logical volumes. In our exercise, the
same SD is shared between all active layers of the calorimeter.

SD is created and associated to detector planes in
DetectorConstruction class in Construct method.

7

Sensitive Detector class

class ScintillatorSD : public G4VSensitiveDetector
{
public:
 /// Constructor
 ScintillatorSD(G4String SDname);
 /// Destructor
 ~ScintillatorSD();

public:
 /// @name methods from base class G4VSensitiveDetector
 //@{
 /// Mandatory base class method : it must to be overloaded:
 G4bool ProcessHits(G4Step *step, G4TouchableHistory *ROhist);

 /// (optional) method of base class G4VSensitiveDetector
 void Initialize(G4HCofThisEvent* HCE);
 /// (optional) method of base class G4VSensitiveDetector
 void EndOfEvent(G4HCofThisEvent* HCE);
 //@}

private:
 SiHitCollection* hitCollection;
};

Hits

Hits Vs Digits

Hits are a “snapshot” of the physical interaction of a track (step) or an
accumulation of interactions of tracks in the sensitive region of the detector,
thus hits represent the “true” energy deposited in the detector

Digits are instead intended to be used to simulate the process of reading-out of
the signal: for example “true” energy is transformed into collected charge,
electronic noise can be applied together with all instrumental effects

Event
TrackTrackTrackTrackTrack

StepStepStepStepStep

Hits Collection aHit

each step: generates a new hit or
accumulates in an existing hit

3

Hits Vs Digits

Hits are a “snapshot” of the physical interaction of a track (step) or an
accumulation of interactions of tracks in the sensitive region of the detector,
thus hits represent the “true” energy deposited in the detector

Digits are instead intended to be used to simulate the process of reading-out of
the signal: for example “true” energy is transformed into collected charge,
electronic noise can be applied together with all instrumental effects

Event
TrackTrackTrackTrackTrack

StepStepStepStepStep

Hits Collection aHit

each step: generates a new hit or
accumulates in an existing hit

Digits Collection aDigi

End of Event:
read-out “signal” is generated

3

Implementing your Hit class

Hit is a user-defined class derived from G4VHit

You can store any type of information by implementing your concrete Hit
class. For example: position of the step, energy deposition of the step

See SimpleHit class:
Accumulates energy of all steps in each layer

Contains also information about absolute position of the energy deposit

6

Implementing your Hit class

Hit is a user-defined class derived from G4VHit

You can store any type of information by implementing your concrete Hit
class. For example: position of the step, energy deposition of the step

See SimpleHit class:
Accumulates energy of all steps in each layer

Contains also information about absolute position of the energy deposit

Hits must be stored in a collection of hits
instantiated from G4THitsCollection template class

G4 provides optimized allocators for memory
management

6

The Hits collection

Hits are accumulated in the hits collection

Each collection has a unique name (a string):
multiple collections can be retrieved by name

However searching a string can be time
consuming: a unique ID (integer) is also
(automatically) associated to each collection

Ask G4 which ID corresponds to your name
and use ID to get the collection

9

The SD interface - 1
Constructor:

00028 SensitiveDetector::SensitiveDetector

In the constructor, define the name of the hits collection handled by this SD

In case your sensitive detector generates more than one kind of hits, define all
collection names

8

ScintillatorSD::ScintillatorSD(G4String SDname)
 : G4VSensitiveDetector(SDname), hitCollection(0)
{
 G4cout<<"Creating SD with name:"<<SDname<<G4endl;

 // 'collectionName' is a protected data member of
 // base class G4VScintillatorSD.
 // Here we declare the name of the collection we will be using.
 collectionName.insert("SiHitCollection");

 // Note that we may add as many collection names we would wish: ie
 // a sensitive detector can have many collections.
}

http://www-zeuthen.desy.de/ILC/geant4/g4course2010/task2/classSensitiveDetector.html%233ef1968481bf70956855cc9dc41bb7d3
http://www-zeuthen.desy.de/ILC/geant4/g4course2010/task2/classSensitiveDetector.html%233ef1968481bf70956855cc9dc41bb7d3
http://www-zeuthen.desy.de/ILC/geant4/g4course2010/task2/classSensitiveDetector.html%233ef1968481bf70956855cc9dc41bb7d3
http://www-zeuthen.desy.de/ILC/geant4/g4course2010/task2/classSensitiveDetector.html%233ef1968481bf70956855cc9dc41bb7d3

The SD Interface - 2

Initialize() method is invoked at beginning of each event

You can get here the unique ID associated to your collection

Instantiate the hits collection and attach it to G4HCofThisEvent passed as
argument

10

void ScintillatorSD::Initialize(G4HCofThisEvent* HCE)
{
 // ------------------------------
 // -- Creation of the collection
 // ------------------------------
 // -- collectionName[0] is "SiHitCollection", as declared in constructor
 std::cout<<"create new hitcollection "<<GetName()<<" "<<collectionName[0]<<std::endl;
 hitCollection = new SiHitCollection(GetName(), collectionName[0]);

 // --
 // -- and attachment of this collection to the "Hits Collection of this Event":
 // --
 static G4int HCID = -1;
 if (HCID<0) HCID = GetCollectionID(0); // <<-- this is to get an ID for collectionName[0]
 HCE->AddHitsCollection(HCID, hitCollection);
}

The SD Interface - 3

For each G4Step occurring in the (logical)
volume to which this SD is attached the
ProcessHits method is invoked

13

G4bool ScintillatorSD::ProcessHits(G4Step *step, G4TouchableHistory *)
{
 // step is guaranteed to be in Scintillator volume :
 // no need to check for volume !

 G4TouchableHandle touchable = step->GetPreStepPoint()->GetTouchableHandle();
 // energy deposit in this step
 G4double edep = step->GetTotalEnergyDeposit();

 if (edep <= 0.) return false;

 return true;
}

Step

Step has two points and “delta” information of a particle (energy loss
along the step, time-of-flight, etc)

Each point knows the volume (and material) associated to it

A step is always limited by geometry boundaries (i.e. never spans
across boundaries)

If the step is limited by a boundary, the post-step point stands on the
boundary and it logically belongs to the next volume

Get the volume information from the PreStepPoint

PreStepPoint
PostStepPoint

Reminder

17

PreStepPoint
PostStepPoint

Touchable: locate a Hit

It would be too complex to locate which strip the step belongs to from its position
(G4ThreeVector). Each G4Step knows which volume it is in.

Layers have been created as “replica”

In memory there is only one volume object “strip”. Its position is parametrized by
its replica number

Touchables can retrieve these number

Remember: PostStep belongs to NEXT volume, use PreStepPoint!

18

Summary

G4Step

“collectionName” : ID“collectionName” : ID

Summary

G4Step
aHit

“collectionName” : ID“collectionName” : ID

Summary

G4Step
“collectionName” : ID

Hits CollectionaHit

“collectionName” : ID“collectionName” : ID

Summary

G4Step
“collectionName” : ID

Hits CollectionaHit Hits CollectionaHit

“anotherCollection” : ID

“collectionName” : ID“collectionName” : ID

Summary

G4Step

Hit Collections of This Event

“collectionName” : ID

Hits CollectionaHit Hits CollectionaHit

“anotherCollection” : ID

“collectionName” : ID“collectionName” : ID

SensitiveDetector

Summary

G4Step

Hit Collections of This Event

“collectionName” : ID

Hits CollectionaHit Hits CollectionaHit

“anotherCollection” : ID

“collectionName” : ID“collectionName” : ID

Exercises for Day 3

 http://www.ifh.de/geant4/g4course2011
Add a Sensitive Detector
Create Hit collection
Fill Histogramms

39

http://www.ifh.de/geant4/g4course2011
http://www.ifh.de/geant4/g4course2011

