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High-Energy Calorimetry: 
Physics of Particle Showers
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2nd

 

lecture (HAD)



Hermann Kolanoski,  Physics of Particle Showers (HAD) 3Geant4 WS - Zeuthen - May 10, 2011

Transverse slice through CMS detector

1. Introduction

Click on a particle type to visualise that particle in CMS
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Important for Calorimetry: 
Jets of Hadrons

-

 

Jet reconstruction
-

 

Jet energy scale (JES)
-

 

Missing energy

Problem: in general different 
energy scales for EM and HAD

coordinates: polar angle 

 

+ azimuth 




or pseudorapidity
η = − ln

£
tan θ

2

¤∆η ×∆φ
jet cone
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5 Hadron Showers

5.1 Shower

 

Development
5.2 Shower

 

Components

 

and Fluctuations
5.3 Characteristic

 

Size

 

of Hadron Showers
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5.1 Hadronic Showers Development
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Hadronic Interactions

λa =
A

NA ρ σinel
≈ 35 g cm−2A 1

3

nuclear absorption length
(≠

 

interaction length)

many reactions contribute

Material Z x0 [mm] Ek [MeV] A λa [mm] λa/x0

H2O 1, 8 361 92 18 836 2.3
Be 4 353 116 9 407 1.2
C 6 188 84 12 381 2.0
Al 13 89 43 27 394 4.4
Fe 26 17.6 22 56 168 9.5
Cu 29 14.3 20 64 151 10.6
W 74 3.5 8.1 183 96 27.4
Pb 82 5.6 7.3 207 171 30.5
U 92 3.2 6.5 238 105 32.8
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De-activation

 

of the

 

Nucleus
time scale

 



 

10-18

 

s

Nuclear and High-Energy Cascades
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cascade
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5.2 Shower
 

Components
 

and Fluctuations

hadronic
cascaden

0

p, n, , K, ...
nucleus

incoming
hadron

p

γ
γ γ

γ

0

el.-mag.
cascade

π0 → γγ : cτ ≈ 25 nm ⇒ spontaneous decay

-

 

many contributions
Problem of hadron calorimetry:                                        + strong fluctuation between

- with different signals

Edep =

⎛⎜⎝fem + fion + fn + fγ + fB| {z }
fh

⎞⎟⎠ E
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EM Contribution to Edep

fem ≈ 1−
³
E
E0

´k−1
k depends on particle multiplicity in cascade

k

 

0.82 

E0

 

is the mean energy to create a 0

0.7 GeV for Cu
E0 =                                     

1.3 GeV for Pb

fluctuations in fem : fem ≈ 0....1



Hermann Kolanoski,  Physics of Particle Showers (HAD) 12Geant4 WS - Zeuthen - May 10, 2011

HAD Contribution to Edep

fh = 1− fem = fion + fn + fγ + fB
fion -

 

ionisation

 

of charged particles 
-

 

relativistic/non-rel
fn -

 

high energy: contributes to 
hadronic

 

cascade
-

 

medium energy: elastic scattering  
transfers energy to nuclei 
(most efficient for small A) 

-

 

low energy: thermalised
n capture  delayed ’s

f

 

-

 

photo-

 

and Compton effect

fB -

 

binding energy lost to break up the 
nucleus; not detectable/ invisible

-,

 

proton beams in iron (MC: CALOR)
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3.3 Characteristic
 

Size
 

of Hadron Showers

Material Z ρ [g/cm3] X0 [mm] A λa [mm] λa/X0

H2O 1, 8 1.00 361 18 836 2.3
Be 4 1.85 353 9 407 1.2
C 6 2.21 188 12 381 2.0
Al 13 2.70 89 27 394 4.4
Fe 26 7.87 17.6 56 168 9.5
Cu 29 8.96 14.3 64 151 10.6
W 74 19.30 3.5 183 96 27.4
Pb 82 11.35 5.6 207 171 30.5
U 92 18.95 3.2 238 105 32.8

tmax ≈ 0.2 ln(E/GeV) + 0.7

t95% ≈ tmax + 2.5λa
¡

E
GeV

¢0.13
R95% ≈ λa

t = length in units of a

much larger than EM showers
(and more fluctuations)
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Exercise (HAD) I

Find the exercises here.

http://www-zeuthen.desy.de/geant4/g4course2011/day1/index.html
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6 Hadron Calorimeters

6.1 Calorimeter

 

Response to Hadrons

 

and Electrons
6.2 Compensation

6.2.1 Hardware Compensation
6.2.2 Software Correktion
6.2.3 ‘Particle

 

Flow’ Concept

 

(not

 

in this

 

lecture)

6.2.4 Duale Readout

 

(not

 

in this

 

lecture)

6.3 Energy Resolution of Hadron Calorimeters
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6.1 Signals of Electrons and Hadrons

S(π) =

⎛⎜⎝fem ²em + fion,r ²ion,r + fion,nr ²ion,nr + fn ²n + fγ ²γ + fB ²B| {z }
fh ²h

⎞⎟⎠ E

S(e)
S(π) =

²em E
(fem²em+fh²h)E

= ²em/²h

1−fem
¡
1− ²em

²h

¢
S(e)

S(π)

def
=

e

π
from e± and π± beams

²em
²h

def
=

e

h
intrinsic cal. property.

e
h = 1 =⇒ e

π = 1
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e/h Dependence of Resolution and Linearity

σE
E = a√

E/GeV
⊕ b

¡
e
h − 1

¢
sampling: a 

 

0.35 for U  
e/h

 

dep.:    b 

 

1 

non-linearity:

S(π(E))/E
S(π(E0)/E0

= fem(E)+(1−fem(E)) (e/h)−1
fem(E0)+(1−fem(E0)) (e/h)−1

resolution:

e/h

 

= 1
‘fully compensated’

fs [%]

e/h
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mip Signal as Reference

S(π)
S(mip) =

π
mip = fem

e
mip + fion,r

r
mip + fion,nr

nr
mip + fn

n
mip + fγ

γ
mip

mip = minimum ionizing particle as reference.

A mip is artificial, not directly measurable, 
usually  inferred from muon

 

beams + MC

fractions efficiencies
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Signal Contributions (1)

e/mip: < 1

 

about 0.5 to 0.7 for reasons discussed in EM part;
becomes larger for lower Z absorber (e.g. Fe, Cu vs. Pb, U)

r/mip: 

 

1

 

the relativistic particles behave like mips

nr/mip: < 1

 

the non-relativistic particles are preferentially stopped in the absorber 

/mip: < 1

 

the nuclear gammas are mostly generated in the absorber 
and transfer energy to non-relativistic particles
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Signal Contributions (2)

n/mip: >> 1 possible with light active media (H, ..) 
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tunable between 0 and O(1000)
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6.2 ‚Compensation‘

Matching of signals from EM and HAD deposited energy:

-

 

‘measure’ EM energy separately
-

 

make signals for EM and HAD equal: e/h  1

1.

 

Software correction: weighting of  EM clusters

2.

 

Hardware compensation: make

 

e/h 

 

1 by design

3.

 

Dual Readout (DR): measure signal with 2 readouts with different

 

sensitivity 
to EM and HAD (e.g. Cerenkov

 

+ Scintillator)

4.

 

Particle Flow Analysis (PFA): distinguish single particles

will concentrate in this lecture on 1 and 2
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Exercise (HAD) II

Find the exercises here.

http://www-zeuthen.desy.de/geant4/g4course2011/day1/index.html
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6.2.1 Hardware Compensation

increase

 

h

 

: compensate

 

EB losses

 

with

 

high n and/or

 



decrease

 

e

 

: high Z of passive medium, 
low

 

Z of active

 

medium

Idea: fn , f

 

and fB are positively correlated via spallation

 

processes
compensate  with high n ,  , and low e

 e/h 

 

1

Example:

ZEUS: 238U with
Fe cladding
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Elastic n-H Scattering in Active Layer

fs [%]

e/h

increase n to compensate for invisible EB

Conditions: -

 

large n-production rate in passive layer (U, Pb, ....)
-

 

small n-absorption cross section in passive layer
-

 

sufficient light elements (H) in active layer
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Does Compensation Work for non-Uranium?

R = passive layer thickness
active layer thickness ∼ 1

fS

dp for 
2.5 mm scint. 

But: large R destroys resolution:

σsampling

E
∼ 1√

fs E
∼
q

R
E

scintillator

 

thickness technically limited to ~ 2 mm
(possible with SPACAL Pb-Sci) 

238U Pb Fe
R 1:1 4:1 40:1
da [cm] 0.25 1.0 10.0
asamp [%] 27 43 125
aintr [%] 22 13 ?

even better for Pb

 

than U!

R 

 



 

em

 

/ n 
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6.2.2 Software Compensation

Method pioneered by CDHS:

EM part develops ‘subshowers’ with higher density
 suppress relatively high energy per cell volume

E0i = Ei(1− C Ei√
Etot

)

σE
E ≈ 85%√

E
→≈ 60%√

E

⇒ σE
E = 50.7%√

E/GeV
⊕ 90%

E/GeV ⊕ 1.6%.

Lar

 

Calorimeter of H1: Eirec =
©
a0 + a1 exp(−αEi0/V i)

ª
Ei0

(CDHS, H1, ATLAS, CMS, ...)
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6.3 Energy Resolution of Hadron Calorimeters

σE
E = a√

E
⊕ b

E ⊕ c

samp noise const

¡
σstoch
E

¢2
=
³

a√
E

´2
=
³
aintr√
E

´2
+
³
asampl√

E

´2
asampl√

E
= 11.5%

√
∆²mip/MeV√
E/GeV
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Constant Term and Leakage

constant term: 
leakage, 
mechanical and  electronic tolerances, 
intercalibration errors, .... 

0

2

4

0 200 400 600 800 1000 1200 1400

E [GeV]

E
/E

 [%
]

stochastic term
1% const. term
2% const. Term

leakage
 

is major problem because of size 
of calorimeters and fluctuations
cures:

 

-

 

tail catcher
-

 

remove late first interactions
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7 Examples for Calorimeters for Hadrons and Jets

7.1 Hadron Calorimetry in Neutrino Experiments
7.2 Calorimetry in LEP Experiments
7.3 HERA: Calorimetry in H1 und ZEUS
7.4 Tevatron
7.5 LHC
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Calorimeter Systems

exp. cal. structure e/h resolution σE
E = a√

E
⊕ b

E ⊕ c

a [
√
GeV] b [MeV] c

ZEUS EM U/scin. - 0.18 < ? 0.?
HAD U/scin. 1.00 0.35 < 500 0.02

H1 EM Pb/LAr - 0.11 250 0.01
HAD Fe/LAr 1.4? 0.507 900 0.016

CDF EM Pb/scin. 0.135 ? ?
(Run I) HAD Fe/scin. ? 0.80 ? ?
D0 EM? U/LAr 1.08? 0.157 1.30 0.003
(Run I) HAD U/LAr 1.08 0.45 1.30 0.04
CMS EM PbOW2 - 0.028 120 0.003

HAD brass/scin. 1.40 1.25 0.56 0.03
ATLAS EM Pb/LAr - 0.10 245 0.007

HAD Fe/scin. 1.30 0.56 1.80 0.03
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7.1 Calorimetry in Neutrino Experiments
driven by the need to kinematically

 

reconstruct
invisible energy, e.g. in NC events:

 + nucleus  + X

CDHS
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7.2 Calorimetry in LEP Experiments

requirement on hadron

 

cal. modest
'particle flow' concept still works at these energies
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7.3 Calorimetry in HERA Experiments

H1

Large efforts to improve hadron

 

calorimetry, 
important for reconstruction and energy calibration of deep-inelastic events
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Uran Calorimeter of ZEUS
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Emiss Measurement
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Construction of the ZEUS Calorimetere
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7.4 Calorimetry in Tevatron Experiments

Example of a trigger tower structure (D0)
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Calorimetry at the Tevatron: CDF

CDF Calorimeters
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7.5 Calorimetry in LHC Experiments

ATLAS Calorimeters
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Calorimetry in LHC Experiments: CMS
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