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Motivation 

• Reproducibility is a major principle underpinning the scientific method. It means 
that results obtained by an experiment or an observational study or in a statistical 
analysis of a data set should be achieved again with a high degree of reliability 
when the study is replicated. 


• Goes back to Robert Boyle, a pioneer of the experimental method, who maintained 
that the foundations of knowledge should be constituted by experimentally 
produced facts, which can be made believable to a scientific community by their 
reproducibility. 

3

https://en.wikipedia.org/wiki/Reproducibility

Reproducibility and reuse of scientific results

https://en.wikipedia.org/wiki/Scientific_method

Scientific results should be documented in such a way that their deduction is fully transparent. 

Requires a detailed description of the methods used to obtain the data and making the full 
dataset and the code to calculate the results easily accessible.


In computational sciences: Any results should be documented by making all data and code 
available in such a way that the computations can be executed again with identical results.


Reproducibility can be distinguished from replication, as referring to reproducing the same results using the same dataset.

https://en.wikipedia.org/wiki/Scientific_method
https://en.wikipedia.org/wiki/Experiment
https://en.wikipedia.org/wiki/Observational_study
https://en.wikipedia.org/wiki/Statistical_analysis
https://en.wikipedia.org/wiki/Statistical_analysis
https://en.wikipedia.org/wiki/Data_set
https://en.wikipedia.org/wiki/Experimental_method
https://en.wikipedia.org/wiki/Scientific_method
https://en.wikipedia.org/wiki/Experiment
https://en.wikipedia.org/wiki/Observational_study
https://en.wikipedia.org/wiki/Statistical_analysis
https://en.wikipedia.org/wiki/Statistical_analysis
https://en.wikipedia.org/wiki/Data_set
https://en.wikipedia.org/wiki/Experimental_method
https://en.wikipedia.org/wiki/Reproducibility
https://en.wikipedia.org/wiki/Reproducibility
https://en.wikipedia.org/wiki/Scientific_method
https://en.wikipedia.org/wiki/Scientific_method
https://en.wikipedia.org/wiki/Computational_science
https://en.wikipedia.org/wiki/Computational_science
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Motivation 
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Reproducibility and reuse of scientific results

Reproducibility also enables reuse

e.g., updating constraints, testing 
new hypotheses, performing 

combinations and/or fits, etc.


→ new research based on existing 
data and analyses


→ longer shelf life, more 

scientific impact

https://en.wikipedia.org/wiki/Reproducibility
https://en.wikipedia.org/wiki/Reproducibility
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Snowmass 2021 
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To achieve their full scientific impact, HEP experiments need to integrate extensive 
data and analysis preservation efforts into their publication processes, alongside 
the communication of results in reusable form and preservation of data products, 
and making event-level data publicly available.

US Community Study on the Future of Particle Physics

Executive summary from “Data and Analysis Preservation, Recasting and Reinterpretation”

arXiv:2203.10057 

Without this, the influence of the hundreds of published analyses from the LHC, 
HL-LHC, EIC, and other future experiments will be limited mainly to the physics 
ideas in vogue at the time the collaboration collected their data. The public 
investment in experimental programs underscores the importance of going beyond 
the original paper publication and ensuring that analyses continue providing 
scientific value in perpetuity.

https://arxiv.org/abs/2203.10057
https://arxiv.org/abs/2203.10057
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To achieve its full scientific impact, your analysis needs to integrate extensive 
data and analysis preservation efforts, alongside the communication of results in 
reusable form and preservation of data products.

Without this, the influence of your work will be limited to the physics idea en vogue 
→  the hypothesis pursued in the paper. The public investment →  your own 
intellectual effort in the study underscores the importance of going beyond the 
original paper publication and ensuring that analyses continue providing scientific 
value in perpetuity.

On the individual scale

Adaptation of Executive summary from “Data and Analysis Preservation, Recasting and Reinterpretation”

arXiv:2203.10057 

https://arxiv.org/abs/2203.10057
https://arxiv.org/abs/2203.10057
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Typical particle physics analysis
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Event selection Signal selection Statistical eval.

updates of existing analyses using e.g. more precise 
theoretical calculations, improved experimental 
calibrations, or a different probability model 

kinematic reinterpretation considering a different 
physical process with a different phase space distribution, 
which might have different efficiencies and acceptances

parametric reinterpretation reparametrizing the likelihood 
through rescaling, without altering the efficiencies and 
acceptances that might modify the distributions

combinations of analyses or datasets in model surveys, 
global fits or global averages


includes global Effective Field Theory (EFT) and Beyond-the-Standard Model (BSM) analyses, 
the reuse of datasets for the determination of parton distribution functions (PDFs), etc.

approach taken e.g. when reusing simplified model results from the LHC, 
or in in the context of Higgs signal strengths 

generally referred to as “recasting”Types of reuse (“reinterpretation”)

(signal/bkg discrimination) (hypo test, interpretation)
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Publication of statistical models

“Publishing statistical models: Getting the most out of particle physics experiments”,

K. Cranmer, SK, H. Prosper (eds) et al., arXiv:2109.04981

https://arxiv.org/abs/2109.04981
https://arxiv.org/abs/2109.04981
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Statistical models
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In particle physics experiments, the statistical nature of the data is typically quantified by 
ascribing to it a probability, as specified by a statistical model p(data|theory)

p(theory|data) = p(data|theory)
p(data)

p(theory)

<latexit sha1_base64="vy0QpdEULt4OqA5BmT4Cub/DThw=">AAACRnicbVBLS8NAGPxS3/VV9ehlsQgWpCSi6EUQRPCoYKvQhLLZbtrFzYPdL0KJ+XVePHvzJ3jxoIhXtzEH2zqwMDsz3z7GT6TQaNuvVmVmdm5+YXGpuryyurZe29hs6zhVjLdYLGN151PNpYh4CwVKfpcoTkNf8lv//nzk3z5wpUUc3eAw4V5I+5EIBKNopG7NS/YyV4UEBzxWw/yx2PQo0rxx6gaKsqwMFNrj32wjH/MaubtPxk9rdGt1u2kXINPEKUkdSlx1ay9uL2ZpyCNkkmrdcewEvYwqFEzyvOqmmieU3dM+7xga0ZBrLytqyMmuUXokiJVZEZJC/TuR0VDrYeibZEhxoCe9kfif10kxOPEyESUp8oj9XhSkkmBMRp2SnlCcoRwaQpkS5q2EDagpD03zVVOCM/nladI+aDqHzaPrw/rZRVnHImzDDuyBA8dwBpdwBS1g8ARv8AGf1rP1bn1Z37/RilXObMEYKvADHjWysw==</latexit>

posterior, interpretation experiment
prior

Illustration courtesy Lukas Heinrich
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Statistical models
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In particle physics experiments, the statistical nature of the data is typically quantified by 
ascribing to it a probability, as specified by a statistical model p(data|theory)

p(x, y|µ, ✓) = p(x|µ, ✓)p(y|✓)

<latexit sha1_base64="QW3fAQReqLwwt/0saeRyL3KAIco=">AAACI3icbVDLSgMxFM34rPVVdekmWIQKpcxIRRGEggguK9gHdIaSSTNtaOZBckccxv6LG3/FjQuluHHhv5hpu9DWA4GTc84luceNBFdgml/G0vLK6tp6biO/ubW9s1vY22+qMJaUNWgoQtl2iWKCB6wBHARrR5IR3xWs5Q6vM7/1wKTiYXAPScQcn/QD7nFKQEvdwiXGUemxjBP8hG0/LmMbBgzICb7K9HkxKk1y01u3UDQr5gR4kVgzUkQz1LuFsd0LaeyzAKggSnUsMwInJRI4FWyUt2PFIkKHpM86mgbEZ8pJJzuO8LFWetgLpT4B4In6eyIlvlKJ7+qkT2Cg5r1M/M/rxOBdOCkPohhYQKcPebHAEOKsMNzjklEQiSaESq7/iumASEJB15rXJVjzKy+S5mnFqlbO7qrF2s2sjhw6REeohCx0jmroFtVRA1H0jF7RO/owXow3Y2x8TqNLxmzmAP2B8f0DClSg5g==</latexit>

Primary measurements

auxiliary data

Parameters of interest (POIs)

nuisance parameters

The values y are often estimates of corresponding 
nuisance parameters; their probability may be, e.g., 
a Gaussian with a specified standard deviation 

Probability density of the auxiliary data

Describes the probabilistic dependence of the observable data on the parameters of interest 

and the nuisance parameters.


When observed data are entered into the statistical model, this becomes the likelihood function.



Sabine Kraml Data Science Basics  •  DESY & Uni Hamburg  •  25 Oct 2022

Measurements reported as “observed value ± 1sigma”  (plus correlations)   
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w/o proper statistical model, a Gaussian approximation is forced onto the reuse of experimental results

In principle OK if large enough statistics (→CLT). However:


• Symmetric Gaussian uncertainties are often a simplification;  
does not hold when systematics dominate


• Often lack of information on correlations


• Non-positive-definite covariance matrices on HEPData


• Lack of breakdown of correlated systematic sources; different 
naming for systematic sources complicates combining processes 


• Correlations between processes often not available


• In case of asymmetric uncertainties, assumptions have to be 
made about the shape of the likelihood function

�2(µ) =
1
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<latexit sha1_base64="rTijGFEM/0IU1TZQkmu2bHyfen4="></latexit>

Severely affects many areas: 
- Parton distribution functions

- Effective field theory fits

- Higgs physics

- BSM searches

- Heavy flavour physics

- Global averages 

- BSM Global fits

- ….


Examples discussed in arXiv:2109.04981
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Jonas Wittbrodt
Publication of Statistical Models 

Hands-on workshop 8-12 Nov 2021

https://indico.cern.ch/event/1088121/

https://indico.cern.ch/event/1088121/
https://indico.cern.ch/event/1088121/
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Juan Rojo on PDF fits

Publication of Statistical Models 

Hands-on workshop 8-12 Nov 2021

https://indico.cern.ch/event/1088121/

Key component of 
predictions for particle, 
nuclear, and astro-particle 
experiments. 
Address fundamental 
questions in QCD.

https://indico.cern.ch/event/1088121/
https://indico.cern.ch/event/1088121/
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(Profile) likelihoods: very useful but not sufficient

• In the likelihood, the data is baked in  
- cannot evaluate likelihood on new data 

- cannot sample from the model (pseudo-data, toy MC)


• In profile likelihoods, nuisance parameter are fixed  
- cannot statistically combine profile likelihoods targeting                                                        the same 

parameters of interest if they share nuisances 


- cannot update constraint terms (auxiliary measurements)


• Reparametrization in terms of different parameters of interest is not always possible 

- parametrization in terms of quantities such as masses, cross sections, widths, branching fractions, 

etc., is often more useful than a parametrization in terms of theory-model (Lagrangian) parameters 

- risk of introducing dependencies which can result in a loss of information
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Simplified statistical models (with combined nuisances)

also have such problems
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Full statistical model

15

The complete probability model for the analysis; includes dependence on the data x,y, the parameters of interest μ 
and nuisance parameters θ, access to the individual terms and the ability to generate pseudo-data (“toy Monte Carlo”). 

The probability to measure xij 
in channel i event j 


Likelihood: The value of the statistical 
model for a given fixed dataset as a 
function of the parameters 

Access to the individual components νik and pik is needed for certain 
types of reinterpretations, e.g. 

- changing the distributions pik(xij|μ,θ) because a different physical 

process with a different phase space distribution is being 
considered;


- updates of existing interpretations using more precise theoretical 
calculations or improved experimental calibrations, or both. 

pdf of auxiliary data y

Essential information  

for analysis preservation and reuse
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- Provides background estimates, changes under systematic 
variations, and observed data counts at the same fidelity as 
used in the experiment.


- Usage: RooFit, pyhf 


- Target: long-term data/analysis preservation,  
reinterpretation purposes

Rate modifications defined in HistFactory for bin b, sample s, channel c. 

ATLAS took the leap
… and started to publish plain-text serialisation of HistFactory workspaces in JSON format

   d 
/ ATL-PHYS-PUB-2019-029

https://cds.cern.ch/record/2684863
https://cds.cern.ch/record/2684863
https://cds.cern.ch/record/2684863
https://cds.cern.ch/record/2684863
https://cds.cern.ch/record/2684863
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ATLAS full statistical models

18

→ statistical evaluation through JSON patching

Illustration by Lukas Heinrich 
Hands-on workshop 8 Nov 2021

Interfaced to pyhf since SModelS v1.2.4 (now v2.2)

G. Alguero, SK, W. Waltenberger, arXiv:2009.01809

G. Alguero, J. Araz, B. Fuks, SK

arXiv:2206.14870 

HistFactory JSON format

The Simplify python tool can be used to create simplified statistical models from full ones by merging all background contributions and 
combining all nuisance parameters into a single one; may yield equivalent results at much lower CPU cost — needs testing case-by-case!

https://arxiv.org/abs/2009.01809
https://arxiv.org/abs/2009.01809
https://arxiv.org/abs/2206.14870
https://arxiv.org/abs/2206.14870
https://pypi.org/project/simplify/
https://pypi.org/project/simplify/
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Improvements w.r.t. “best signal region” approach

19

G. Alguero, SK, W. Waltenberger, arXiv:2009.01809

https://arxiv.org/abs/2009.01809
https://arxiv.org/abs/2009.01809


(
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Beyond the Standard Model (BSM) searches at the LHC

BSM searches are typically performed in specific bins of 
kinematic distributions, so-called signal regions (SRs)


- designed to maximise the number of events from the 
hypothesised signal with respect to the number of 
“background” events originating from Standard Model 
processes. 


- control and validation regions are defined in the phase  
space where no or very little signal from new physics is 
expected. 


- A statistical analysis is then performed to evaluate the 
confidence level of the hypothesised BSM scenario,    
and claim evidence for or set a limit on the new particles     
of this scenario.

21

Example from ATLAS search for electroweakinos  
in final states with 1 lepton + H(→bb) + MET 


ATLAS-SUSY-2019-08
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Reinterpretation studies outside the experimental collaborations 
aim at reproducing this process for BSM scenarios different 
from those considered in the original experimental publication. 


- In the absence of appropriate correlation information,         
it is common practice to use only the most sensitive SR 
(a.k.a. “best SR”) for the statistical evaluation, e.g. limit setting.


- Problems: 1. only a part of the available data is used, which 
can lead to false conclusions (typically loss of sensitivity);                                                   
2. if the best SR changes from point to point in a scan, this 
can lead to numerical instabilities in global fits. 

Beyond the Standard Model (BSM) searches at the LHC

BSM searches are typically performed in specific bins of 
kinematic distributions, so-called signal regions (SRs)


- designed to maximise the number of events from the 
hypothesised signal with respect to the number of 
“background” events originating from Standard Model 
processes. 


- control and validation regions are defined in the phase  
space where no or very little signal from new physics is 
expected. 


- A statistical analysis is then performed to evaluate the 
confidence level of the hypothesised BSM scenario,    
and claim evidence for or set a limit on the new particles     
of this scenario.

22

The statistical combination of disjoint SRs in reinterpretation studies uses more of the data 
of an analysis and gives more robust results than the single (best) SR approach. 

L(µ, ✓) = (µs+ b+ ✓)nobs e�(µs+b+✓)

nobs!
exp

✓
� ✓2

2�2

◆

<latexit sha1_base64="fqPfm/U5qW8PgI1QI373ZaB1X+Y="></latexit>

s, µ … signal, signal strength;  b … background;  𝜃 … nuisances; �2 = �2s + �2b

<latexit sha1_base64="lxcvPCo4CC9gop/zGszPSCs+Sk4=">AAACB3icbZDLSsNAFIZP6q3WW9SlIINFEISSlIpuhIIuXFawF2hjmEym7dDJhZmJUEJ3bnwVNy4UcesruPNtnLZRtPWHgY//nMOZ83sxZ1JZ1qeRW1hcWl7JrxbW1jc2t8ztnYaMEkFonUQ8Ei0PS8pZSOuKKU5bsaA48DhteoOLcb15R4VkUXijhjF1AtwLWZcRrLTlmvsdn3KFb8vn3+DK4x/0XLNolayJ0DzYGRQhU801Pzp+RJKAhopwLGXbtmLlpFgoRjgdFTqJpDEmA9yjbY0hDqh00skdI3SoHR91I6FfqNDE/T2R4kDKYeDpzgCrvpytjc3/au1Edc+clIVxomhIpou6CUcqQuNQkM8EJYoPNWAimP4rIn0sMFE6uoIOwZ49eR4a5ZJdKZ1cV4rVyyyOPOzBARyBDadQhSuoQR0I3MMjPMOL8WA8Ga/G27Q1Z2Qzu/BHxvsX9USYvg==</latexit>
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• Best-SR approach: assuming a Poisson distribution for the data and a 
Gaussian with variance of δ2 for the nuisances, p(θ)


• CMS analyses sometimes provide a covariance matrix, which allow for 
the combination of disjoint SRs in a simplified likelihood approach 


- Implemented in SModelS and GAMBIT since a while;                         
recently also in MadAnalysis 5  

CMS: covariance matrices

23

[CMS NOTE-2017/001]

Much(!) better than best-SR, but caveat are non-Gaussian effects e.g. when systematic uncertainties dominate

L(µ, ✓) = (µs+ b+ ✓)nobs e�(µs+b+✓)

nobs!
exp
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2�2
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<latexit sha1_base64="fqPfm/U5qW8PgI1QI373ZaB1X+Y="></latexit>

�2 = �2s + �2b
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• Best-SR approach: assuming a Poisson distribution for the data and a 
Gaussian with variance of δ2 for the nuisances, p(θ)


• CMS analyses sometimes provide a covariance matrix, which allows for 
the combination of disjoint SRs in a simplified likelihood approach 


- Implemented in SModelS and GAMBIT since a while;                         
recently also in MadAnalysis 5  

CMS: covariance matrices

24

covariance matrix[CMS NOTE-2017/001]
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Much(!) better than best-SR, but caveat are non-Gaussian effects e.g. when systematic unc. dominate

G. Alguero, J. Araz, B. Fuks, SK, 

arXiv:2206.14870 

https://cds.cern.ch/record/2242860?ln=en
https://cds.cern.ch/record/2242860?ln=en
https://arxiv.org/abs/2206.14870
https://arxiv.org/abs/2206.14870


)  back to full statistical models
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Simplify: from full to simplified likelihoods

26

ATL-PHYS-PUB-2021-038

Computing e.g. a CLs value from the full statistical model with tens to hundreds of nuisance parameters is accurate 
but too CPU intensive for some use cases → can we simplify this? 


The Simplify python tool creates simplified statistical models from full ones by merging all background 
contributions and combining all nuisance parameters into a single one; same HistFactory JSON format

much lower CPU cost but not always a good approximation

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-038/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-038/
https://pypi.org/project/simplify/
https://pypi.org/project/simplify/
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Machine-learn likelihoods 
• Machine-learn likelihoods from full statistical models as 

functions of signal counts in each SRs


• Neural networks: sequential multilayer perceptrons                        
using TensorFlow2. 

- loss function: mean squared error 

- activation function: Leaky Relu with alpha=0.2.


• Example for ATLAS-SUSY-2019-08 (9 SRs): 


- 3 layers, 512 neurons, MAPE = 0.2504, Max PE:  5.429


• The NN models are 


- saved in ONNX (Open Neural Network Exchange) format 
using the tf2onnx converter, 


- then interfaced from SModelS using ONNX Runtime

27

Humberto Reyes Gonzalez

PRE
LIM

INA
RY

Work in progress!

https://onnx.ai/
https://github.com/onnx/tensorflow-onnx
https://onnxruntime.ai/
https://onnx.ai/
https://github.com/onnx/tensorflow-onnx
https://onnxruntime.ai/
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Analysis preservation and reuse

“Data and Analysis Preservation, Recasting and Reinterpretation”

S. Bailey et al., arXiv:2203.10057

https://arxiv.org/abs/2203.10057
https://arxiv.org/abs/2203.10057
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Analysis preservation

29

Event selection Signal selection Statistical eval.
(signal/bkg discrimination) (hypo test, interpretation)

Exact software chain used to perform the 
analysis in the experiment.  

‣ Full post-generation software stack from detector 
simulation and reconstruction to the physics 
analysis code. 


‣ Complicated by the diversity of analysis software 
frameworks, even within a given experiment           
→ container images 


‣ High computing power requirements                              
on any large-scale reuse 


Full preservation

Fast simulation frameworks, independent of 
the original experiment software chain   

‣ More modest CPU demands, but approximations 
involved reduce the precision. 


‣ Several public frameworks enabling reinterpretation 
studies for the whole HEP community 


‣ Two categories: 

‣ Particle-level (detector-unfolded) measurements

‣ Reconstruction-level analyses (require emulation 

of detector effects)


Lightweight preservation
RIVET

ColliderBit

ADL

….

Preservation of analysis logic and workflows enabling the reuse 
of the original analysis process and associated data products. 
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Snowmass white paper on data and analysis preservation and reinterpretation

30

Ensure that release of analysis preservation logic via public frameworks for the 
community to use is integrated with experiment publication and data-release processes, 
to maximise analysis impact.

S. Bailey et al., arXiv:2203.10057

https://arxiv.org/abs/2203.10057
https://arxiv.org/abs/2203.10057
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Simulation-based reinterpretation (“recasting”)

31

Aims at reproducing experimental analyses in Monte 
Carlo simulation


Nowadays well established for traditional cut-based 
analyses. Information needed:


However, more and more analyses exploit ML 
techniques to gain in sensitivity

Simulation of hard scattering process(es)

(e.g. MadGraph)


⬇

showering and hadronization,


incl. matching & merging

(e.g. Pythia)


⬇

object ID and reconstruction, 

including detector effects:*


(e.g. DELPHES)

⬇


application of event/signal selection 
(actual recast code)


⬇

statistical evaluation 

(background numbers usually from exp. pub.)

workflow

* except for detector-unfolded results (Rivet/Contur)

Lightweight, public

object definitions; 

identification, tagging, 

reconstruction efficiencies 

detailed preselection and 
signal (+control) region cuts

e.g. ML-based taggers,

signal/bkg discrimination with ML classifiers

Pb: how can we reuse those? 

cf. arXiv:2003.07868

https://arxiv.org/abs/2003.07868
https://arxiv.org/abs/2003.07868
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ML as a bottleneck for reinterpretation?

32

Illustrative example from G. Alguero, J. Araz, B. Fuks, SK, arXiv:2206.14870

Conventional cut-based analysis. 
All needed information is provided, 

recasting works very well

Analysis employs a BDT for tau tagging;  
resulting efficiencies given only approximately 

→ serious differences in the recasting
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ML as a bottleneck for reinterpretation?

More and more analyses exploit ML techniques to gain in sensitivity.


Serious difficulty for analysis preservation and reuse unless


- resulting id/reco efficiencies can be (and are!) parametrised            
in terms of quantities accessible in a simulation, e.g., pt, η, …


- the actual ML model is published in appropriate form.


Two analyses where the latter has been attempted:


ATLAS-SUSY-2018-22 (0-lepton gluino/squark search)                     
published BDT weights as XML file 


ATLAS-SUSY-2019-04 (1-2 leptons + jets RPV search)                     
published neural network as ONNX file

Example: top taggers

13 different algorithms: image-based (2), 

4-vector-based (5), theory-inspired (6) taggers 

“The Machine Learning Landscape of Top Taggers” 

G. Kasieczka, T. Plehn et al., arXiv:1902.09914

→ RAMP seminar by Kenta Uno

→ RAMP seminar by Javier Montejo Berlingen

RAMP: Reinterpretation Auxiliary Material Presentation

Caveat: input variables need to be physics quantities that can be matched in a simulation

https://arxiv.org/abs/1902.09914
https://arxiv.org/abs/1902.09914
https://indico.cern.ch/event/1015914/
https://indico.cern.ch/event/1083851/
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Kenta Uno on ATLAS-SUSY-2018-22 

34
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Javier Montejo Berlingen on ATLAS-SUSY-2019-04

35
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Snowmass white paper on data and analysis preservation and reinterpretation

36

S. Bailey et al., arXiv:2203.10057

Encourage that reinterpretability and reuse be kept in mind early on in the analysis design. 
This concerns, for instance, the choice of input parameters in ML models, the full 
specification of the fiducial phase space of a measurement in terms of the final 
state, including any vetos applied, and generally the choice of non-overlapping regions 
and standard naming of shared nuisances to facilitate the combination of analyses.

https://arxiv.org/abs/2203.10057
https://arxiv.org/abs/2203.10057


Some more comments 

on reproducibility and reuse of ML models
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Open Neural Network Exchange

ONNX is an open format built to represent ML models. 

- aims at providing a common language any ML framework can use to describe its 

models. 

- makes it possible to deploy a model independent from the learning framework 

used to build it.


Converters exist for scikit-learn, tensorflow, pytorch, and others                                      
NB must be updated every time ONNX or the library they support have a new released version.


Beware of custom layers, experimental features, etc.!                                                         
may be troublesome for converter and/or runtime (interpreter)

38

“defines all the necessary operations a machine learning model needs to implement its inference function”

https://onnx.ai/onnx/tutorial_python/

The deployment of a ML model usually requires replicating the entire ecosystem used to train the model, 
most of the time with a docker. Once a model is converted into ONNX, the production environment only 
needs a runtime (C, java, python, javascript, ….) to execute the graph defined with ONNX operators.

For pertinent reuse, input variables 
must be clearly documented

Runtime (interpreter) must match ONXX version 
→ possible issue for preservation?

https://onnx.ai/onnx/tutorial_python/
https://onnx.ai/onnx/tutorial_python/
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Ltwnn

39

David Hohn > lwtnn

“Our underlying assumption is that 
training and inference happen in very 
different environments: we assume 
that the training environment is 
flexible enough to support modern 
and frequently-changing libraries, 
and that the inference environment 
is much less flexible.”

https://gitlab.cern.ch/dhohn
https://gitlab.cern.ch/dhohn/lwtnn
https://gitlab.cern.ch/dhohn
https://gitlab.cern.ch/dhohn/lwtnn
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Reproducibility of ML models
To reproduce a ML model, one needs


The precise ecosystem used to train the model

- Tools and their versions


- Exact architecture (layers, neurons, …)


- Activation and loss functions


- Anything else specifying the algorithm


The training and validation data


The initial conditions (random seeds) for the weights

40

“A learning algorithm can be viewed as searching a space H 
of hypotheses to identify the best hypothesis in the space.”

Thomas G. Dietterich 
Ensemble Methods in Machine Learning

https://link.springer.com/chapter/10.1007/3-540-45014-9_1
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Effect of different initialisation → ensemble methods

41

Top Tagging Through Ensemble Learning 
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Conclusions

42

The data and analyses from particle physics experiments     
are unique and of immense scientific value.


Impact can go much beyond original paper publication.


Proper preservation, enabling long-term future reuse, 
maximises the scientific return. 


It is worthwhile to keep reinterpretability and reuse in mind                        
early on in analysis design.
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https://indico.cern.ch/category/14155/

Next Reinterpretation-Forum workshop

https://indico.cern.ch/event/1197680/

https://indico.cern.ch/category/14155/
https://indico.cern.ch/category/14155/
https://indico.cern.ch/event/1197680/
https://indico.cern.ch/event/1197680/


Backup
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CMS simplified likelihood

Some simplifying assumptions must be made to reduce the complexity of the full probability density function p(q ̃|q). 


• The constraints on the background contributions are Gaussian such that the distribution of the number of 
background events is symmetric about the expectation, bi, and its variance is independent of q. Often, the 
background contributions are estimated from control regions in data with large sample sizes, which makes this 
assumption valid. The covariance, and therefore only the linear correlation, between the background contribution in 
each region is sufficient to approximate p(q ̃|q) at least for values of q which are close to q ̃ . 


• The numbers of events, ni, are statistically independent from one another. This is true when there are no events 
which are included in more than one search region and the estimates of the background contributions, bi, and 
covariance matrix V have not been obtained from data which are statistically dependent on the data from any search 
region. 


• The systematic uncertainties in the signal model can be neglected. The validity of this assumption will strongly 
depend on the specific BSM physics model being considered. Systematic uncertainties on the signal can be 
accounted for by adding appropriate nuisance parameters with Gaussian constraints as for the background 
contributions. 

45

[CMS NOTE-2017/001]

https://cds.cern.ch/record/2242860?ln=en
https://cds.cern.ch/record/2242860?ln=en
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Reinterpretation: two approaches

Reuse simplified model results 
(σ95, signal A×ε)

Reproduce experimental analysis 
in a Monte Carlo simulation

Test of  
BSM hypothesisRIVET 

Contur ColliderBitADL

Assumes that A×ε doesn’t change 
too much w.r.t. original model“recasting”
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Workflow

47

Simulation of hard scattering process(es)

(e.g. MadGraph)


⬇

showering and hadronization,


incl. matching & merging

(e.g. Pythia)


⬇

emulation of detector effects:*


object reconstruction, efficiencies, …

(e.g. DELPHES)


⬇

application of signal selection cuts 

(actual recast code)

⬇


statistical evaluation 
(background numbers usually from exp. pub.)

simulation-based recasting

Create SLHA file 

with mass spectrum and decay tables


⬇

add production cross sections


(SModelS xseccomputer or micrOMEGAs)

⬇


compute all signal weights : 

σ×BR×BR…


⬇

sum matching elements


⬇

find and apply A×ε (or σ95) values 

from experimental results

⬇


statistical evaluation‡


(background numbers usually from exp. pub.)


simplified model approach (SModelS)

‡ in case exp. result is σ95: only allowed/excluded * except for detector-unfolded results (Rivet/Contur)
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Pro’s and con’s
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Simulation of hard scattering process(es)

(e.g. MadGraph)


⬇

Showering and hadronization,


incl. matching & merging

(e.g. Pythia)


⬇

emulation of detector effects:


object reconstruction, efficiencies, …

(e.g. DELPHES)


⬇

application of signal selection cuts 

(actual recast code)

⬇


statistical evaluation 
(background numbers usually from exp. pub.)

simulation-based recasting
• More generic and often more precise than simplified 

model results; in principle applicable to any new signal 
caveat: control regions typically not included in react codes! 


• Need to take care to simulate all relevant processes                   
(not always obvious e.g. in scans of complex parameters spaces where 
dominant processes can change)


• Very CPU expensive 

• So far only cut-and-count analyses are recasted 


• ATLAS / CMS as well as Run1 (8 Tev) / Run 2 (13 TeV) 
analyses need to be run separately


• So far, prompt and long-lived signatures need to be 
treated separately                                                                                            
→ careful separation needed in models featuring both                                                                                      
→ response of prompt analyses to LLPs unclear / wrong 


• Implementation and validation of new analyses is time-
consuming and sometimes quite difficult 

→ Detailed information needed from experiment           
.       analysis logic, object definitions, cuts, efficiencies, cut-flows, etc.



Sabine Kraml Data Science Basics  •  DESY & Uni Hamburg  •  25 Oct 2022

Pro’s and con’s

49

Create SLHA file 

with mass spectrum and decay tables


⬇

add production cross sections


(SModelS xseccomputer or micrOMEGAs)

⬇


compute all signal weights : 

σ×BR×BR…


⬇

sum matching elements


⬇

find and apply A×ε (or σ95) values 

from experimental results

⬇


statistical evaluation‡


(background numbers usually from exp. pub.)


simplified model approach (SModelS)

‡ in case exp. result is σ95: only allowed/excluded 

• Assumes that signal acceptances are to good approx- 
imation the same as in original experimental result. 


Valid for simple rescaling of production and decay rates (σ×BR);   
other cases need to be verified, e.g. spin or production mode 
dependence.


• Applicable beyond cut & count analyses                           
(ML techniques)


• Advantages are simplicity and speed!                                    
→ very fast b/c no MC simulation needed                                                
→ well suited for large scans and model surveys


• Large database of experimental results


• ATLAS and CMS, Run1 and Run2, prompt and long-
lived results all treated simultaneously


• Easy classification of unconstrained cross section, 
missing topologies 

• Often conservative: coverage depends on variety of 
available simplified-model results


