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The Challenge

> Solving Schrödinger’s Equation is hard

> Usually turn to numerical approximations

> …but numerics have limitations

> Amount of data needed depends exponentially on d

> The Curse of Dimensionality

> How do we improve dependency?

> More flexibility to our basis elements

> Machine Learning comes into play
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Problem Setup

> Time Independent Schrödiger Equation (TISE)

E |ψ〉 = Ĥ |ψ〉
> We approximate it using the variational principle [Lib22]

> Fundamentally: We need loss function to optimize

> Energy of approximation state EΘ is always ≥ than groundstate E0

Proof.

Assuming normalization of |ψΘ〉 and letting {|k〉}∞k=1 be eigenstates of Ĥ

EΘ = 〈ψΘ| Ĥ |ψΘ〉 =
∞∑

m,n=0

ᾱmαn 〈m| Ĥ |n〉︸ ︷︷ ︸
En·δm,n

=

∞∑
n=0

|αn|2En ≥ E0

∞∑
n=0

|αn|2 = E0 (1)
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ᾱmαn 〈m| Ĥ |n〉︸ ︷︷ ︸
En·δm,n

=

∞∑
n=0

|αn|2En ≥ E0

∞∑
n=0

|αn|2 = E0 (1)

DESY. | Machine Learning in Quantum Mechanics | Nicolas Mendoza | Hamburg, 07.09.2022 Page 5

http://creativecommons.org/licenses/by/4.0/


Problem Setup

> Time Independent Schrödiger Equation (TISE)

E |ψ〉 = Ĥ |ψ〉
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Variational Principle

> This principle applies to higher order eigenenergies

> Idea: Consider orthogonal subspace to |0〉 and reapply Eq. (1)

> Can be done for all space (if it is separable)

> More rigorous approach in [Lib22]

> ⇒ must diagonalize [H̃]ij = 〈ϕi| Ĥ |ϕj〉 given arbitrary orthonormal basis {|ϕk〉}∞k=1

> Can be an infinite dimensional matrix

> ∞ is a problem numerically
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> ⇒ must diagonalize [H̃]ij = 〈ϕi| Ĥ |ϕj〉 given arbitrary orthonormal basis {|ϕk〉}∞k=1

> Can be an infinite dimensional matrix

> ∞ is a problem numerically

DESY. | Machine Learning in Quantum Mechanics | Nicolas Mendoza | Hamburg, 07.09.2022 Page 6

http://creativecommons.org/licenses/by/4.0/


Variational Principle

> This principle applies to higher order eigenenergies

> Idea: Consider orthogonal subspace to |0〉 and reapply Eq. (1)

> Can be done for all space (if it is separable)

> More rigorous approach in [Lib22]
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> ⇒ must diagonalize [H̃]ij = 〈ϕi| Ĥ |ϕj〉 given arbitrary orthonormal basis {|ϕk〉}∞k=1

> Can be an infinite dimensional matrix

> ∞ is a problem numerically

DESY. | Machine Learning in Quantum Mechanics | Nicolas Mendoza | Hamburg, 07.09.2022 Page 6

http://creativecommons.org/licenses/by/4.0/


Managing ∞

> Define a truncation parameter Nmax

> Approximate state as

|ψ〉 ≈
Nmax∑
k=0

ck |ϕk〉

> Becomes finite-dimensional problem

> Recall: Curse of dimensionality!

> Nmax needed to converge to real results scales exponentially with d

> Approach: define a more flexible ‘augmented basis’ {|ϕA
i 〉}i

> Reduce Nmax needed when augmented basis is optimized
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Role of ML

> Will start considering coordinate space: |ψ〉 =∧ ψ(x)

> Define augmented basis as:

ϕA
k (x) = ϕk(g(x)) ·

√
det

∣∣∣∣dgdx
∣∣∣∣ (2)

> g is a Normalizing Flow

> This preserves orthonormality

Proof.

〈ϕA
k ||ϕA

k 〉 =
∫
dxϕi(g(x))ϕj(g(x)) · det

∣∣∣∣dgdx
∣∣∣∣ = ∫

dg

∣∣∣∣dxdg
∣∣∣∣ϕi(g)ϕj(g) · det

∣∣∣∣dgdx
∣∣∣∣ = δi,j
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Normalizing Flows

> Basic idea: A chain of diffeomorphisms

> Invertible and differentiable

z = (fn ◦ fn−1 ◦ · · · ◦ f1)(x)

> Several different paradigms

> Need to find which ones best improve

flexibility of basis states

> We concentrate on RNVP
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RNVP

> The Real-valued

Non-Volume-Preserving model

> Let Pk be a projection over half of the

basis vectors and Qk ≡ 1 − Pk

> layer gk(x) is given by

gk(x) = Pk[x] +Qk[fk(x)] with

fk(x) = esk(Pk[x]) � x+ tk(Pk[x])
(3)

> Inverse can be shown rigorously

Figure: Basic layer of RNVP [Köt21]
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Convergence

How do we know

Nmax∑
k=0

ckϕ
A
k converges to the real result as Nmax → ∞?

> Let g be the normalizing flow

> Analogous to showing f ◦ g ∈ S ∀f ∈ S

> S are rapidly decreasing, infinitely differentiable functions

>

≡
{
f ∈ C∞ | ‖xβ · ∂

α

∂α
‖ <∞

}
> If g is RNVP (with a slight modification), then f ◦ g ∈ S

> For now only in 1 dimensional case

> Proof left as an exercise to the reader
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Performance?
> We compared results in H2S

molecule

> Normalizing Flows greatly improved

stretching case (Fig. 3)

> RNVP behaves similarly to IResNet

> Possibly perform better on higher

dimensional data

> Outperform no-neural-network

(LIN)

Figure: Stretching case for H2S molecule
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Performance

Figure: RNVP performance vs No neural network (- -)

> RNVP clearly outperformed on H2S
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Thank you!
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