Machine Learning in Quantum Mechanics

Normalizing Flows for Computing Molecular Vibrational Wave Functions

Nicolas Mendoza Hamburg, 07.09.2022

Contents

- > Introduction
- > Physics
- Machine Learning
- > Mathematics
- > Results

- > Solving Schrödinger's Equation is hard
- Usually turn to numerical approximations
- > ...but numerics have limitations
- > Amount of data needed depends exponentially on a
- > The Curse of Dimensionality
- > How do we improve dependency?
- More flexibility to our basis elements
- Machine Learning comes into play

- Solving Schrödinger's Equation is hard
- > Usually turn to numerical approximations
- > ...but numerics have limitations
- > Amount of data needed depends exponentially on a
- The Curse of Dimensionality
- > How do we improve dependency?
- More flexibility to our basis elements
- Machine Learning comes into play

- Solving Schrödinger's Equation is hard
- > Usually turn to numerical approximations
- > ...but numerics have limitations
- Amount of data needed depends exponentially on a
- The Curse of Dimensionality
- > How do we improve dependency?
- More flexibility to our basis elements
- Machine Learning comes into play

- Solving Schrödinger's Equation is hard
- > Usually turn to numerical approximations
- > ...but numerics have limitations
- > Amount of data needed depends exponentially on d
- > The Curse of Dimensionality
- > How do we improve dependency?
- More flexibility to our basis elements
- Machine Learning comes into play

- Solving Schrödinger's Equation is hard
- > Usually turn to numerical approximations
- ...but numerics have limitations
- > Amount of data needed depends exponentially on d
- > The Curse of Dimensionality
- > How do we improve dependency?
- More flexibility to our basis elements
- Machine Learning comes into play

- Solving Schrödinger's Equation is hard
- > Usually turn to numerical approximations
- > ...but numerics have limitations
- > Amount of data needed depends exponentially on d
- > The Curse of Dimensionality
- > How do we improve dependency?
- More flexibility to our basis elements
- Machine Learning comes into play

- Solving Schrödinger's Equation is hard
- Usually turn to numerical approximations
- but numerics have limitations.
- > Amount of data needed depends exponentially on d
- The Curse of Dimensionality
- How do we improve dependency?
- More flexibility to our basis elements

- Solving Schrödinger's Equation is hard
- > Usually turn to numerical approximations
- ...but numerics have limitations
- > Amount of data needed depends exponentially on d
- > The Curse of Dimensionality
- > How do we improve dependency?
- More flexibility to our basis elements
- > Machine Learning comes into play

Contents

- Introduction
- > Physics
- Machine Learning
- Mathematics
- > Results

> Time Independent Schrödiger Equation (TISE)

$$E\left|\psi\right\rangle = \hat{H}\left|\psi\right\rangle$$

- We approximate it using the variational principle [Lib22]
- > Fundamentally: We need loss function to optimize
- > Energy of approximation state E_{Θ} is always \geq than groundstate E_{Ω}

- Assuming normalization of $|\psi_{\Theta}\rangle$ and letting $\{|k\rangle\}_{k=1}^{\infty}$, be eigenstates of H
 - $E_{\Theta} = (\psi_{\Theta}|\hat{H}|\psi_{\Theta}) = \sum_{\substack{n \in \mathbb{N} \\ n \in \mathbb{N}}} \alpha_m \alpha_n \underbrace{(m|\hat{H}|n)}_{n} = \sum_{\substack{n \in \mathbb{N} \\ n \in \mathbb{N}}} |\alpha_n|^2 E_n \ge E_0 \sum_{\substack{n \in \mathbb{N} \\ n \in \mathbb{N}}} |\alpha_n|^2 = E_0$
 - m,n=0 $\sum_{n=0}^{\infty}$ n=0 n=0

Time Independent Schrödiger Equation (TISE)

$$E\left|\psi\right\rangle = \hat{H}\left|\psi\right\rangle$$

- > We approximate it using the variational principle [Lib22]
- > Fundamentally: We need loss function to optimize
- > Energy of approximation state E_{Θ} is always \geq than groundstate E_{0}

Time Independent Schrödiger Equation (TISE)

$$E\left|\psi\right\rangle = \hat{H}\left|\psi\right\rangle$$

- > We approximate it using the variational principle [Lib22]
- > Fundamentally: We need loss function to optimize
- **>** Energy of approximation state E_{Θ} is always ≥ than groundstate E_{Θ}

Assuming normalization of $|\psi_\Theta
angle$ and letting $\{|k
angle\}_{k=1}^\infty$ be eigenstates of H

 $E_{\Theta} = \langle \psi_{\Theta} | \hat{H} | \psi_{\Theta} \rangle = \sum_{m,n=0} \bar{\alpha}_m \alpha_n \underbrace{\langle m | \hat{H} | n \rangle}_{E \rightarrow X} = \sum_{n=0} |\alpha_n|^2 E_n \ge E_0 \sum_{n=0} |\alpha_n|^2 = E_0$

Time Independent Schrödiger Equation (TISE)

$$E\left|\psi\right\rangle = \hat{H}\left|\psi\right\rangle$$

- > We approximate it using the variational principle [Lib22]
- > Fundamentally: We need loss function to optimize
- > Energy of approximation state E_{Θ} is always \geq than groundstate E_0

Proof.

Assuming normalization of $|\psi_\Theta\rangle$ and letting $\{|k\rangle\}_{k=1}^\infty$ be eigenstates of \hat{H}

$$E_{\Theta} = \langle \psi_{\Theta} | \hat{H} | \psi_{\Theta} \rangle = \sum_{m,n=0}^{\infty} \bar{\alpha}_m \alpha_n \underbrace{\langle m | \hat{H} | n \rangle}_{E_n, \delta_{m,n}} = \sum_{n=0}^{\infty} |\alpha_n|^2 E_n \ge E_0 \sum_{n=0}^{\infty} |\alpha_n|^2 = E_0$$
 (1)

Time Independent Schrödiger Equation (TISE)

$$E |\psi\rangle = \hat{H} |\psi\rangle$$

- > We approximate it using the variational principle [Lib22]
- > Fundamentally: We need loss function to optimize
- > Energy of approximation state E_{Θ} is always \geq than groundstate E_0

Proof.

Assuming normalization of $|\psi_{\Theta}\rangle$ and letting $\{|k\rangle\}_{k=1}^{\infty}$ be eigenstates of \hat{H}

$$E_{\Theta} = \langle \psi_{\Theta} | \hat{H} | \psi_{\Theta} \rangle = \sum_{m,n=0}^{\infty} \bar{\alpha}_m \alpha_n \underbrace{\langle m | \hat{H} | n \rangle}_{E_{-}, \delta_{-}} = \sum_{n=0}^{\infty} |\alpha_n|^2 E_n \ge E_0 \sum_{n=0}^{\infty} |\alpha_n|^2 = E_0$$
 (1)

- > This principle applies to higher order eigenenergies
- > Idea: Consider orthogonal subspace to |0 and reapply Eq. (1)
- Can be done for all space (if it is separable)
- More rigorous approach in [Lib22]
- lacktriangleright \Rightarrow must diagonalize $[\hat{H}]_{ij} = \langle \varphi_i | \hat{H} | \varphi_j \rangle$ given arbitrary orthonormal basis $\{ | \varphi_k \rangle \}_{k=1}^{\infty}$
- Can be an infinite dimensional matrix
- > ∞ is a problem numerically

- > This principle applies to higher order eigenenergies
- > Idea: Consider orthogonal subspace to $|0\rangle$ and reapply Eq. (1)
- Can be done for all space (if it is separable)
- More rigorous approach in [Lib22]
- $>\Rightarrow$ must diagonalize $[\hat{H}]_{ij}=\langle \varphi_i|\hat{H}|\varphi_j
 angle$ given arbitrary orthonormal basis $\{|\varphi_k
 angle\}_{k=1}^\infty$
- Can be an infinite dimensional matrix
- > ∞ is a problem numerically

- > This principle applies to higher order eigenenergies
- > Idea: Consider orthogonal subspace to $|0\rangle$ and reapply Eq. (1)
- Can be done for all space (if it is separable)
- More rigorous approach in [Lib22]
- lacktriangle must diagonalize $[\tilde{H}]_{ij} = \langle \varphi_i | \hat{H} | \varphi_j \rangle$ given arbitrary orthonormal basis $\{ | \varphi_k \rangle \}_{k=1}^{\infty}$
- Can be an infinite dimensional matrix
- > ∞ is a problem numerically

- > This principle applies to higher order eigenenergies
- > Idea: Consider orthogonal subspace to $|0\rangle$ and reapply Eq. (1)
- Can be done for all space (if it is separable)
- More rigorous approach in [Lib22]
- lacktriangle must diagonalize $[\widetilde{H}]_{ij} = \langle \varphi_i | \hat{H} | \varphi_j \rangle$ given arbitrary orthonormal basis $\{ | \varphi_k \rangle \}_{k=1}^{\infty}$
- Can be an infinite dimensional matrix
- > ∞ is a problem numerically

- > This principle applies to higher order eigenenergies
- > Idea: Consider orthogonal subspace to $|0\rangle$ and reapply Eq. (1)
- Can be done for all space (if it is separable)
- More rigorous approach in [Lib22]
- lacktriangleright \Rightarrow must diagonalize $[\widetilde{H}]_{ij}=\langle arphi_i|\hat{H}|arphi_j
 angle$ given arbitrary orthonormal basis $\{|arphi_k
 angle\}_{k=1}^\infty$
- Can be an infinite dimensional matrix
- > ∞ is a problem numerically

- > This principle applies to higher order eigenenergies
- > Idea: Consider orthogonal subspace to $|0\rangle$ and reapply Eq. (1)
- > Can be done for all space (if it is separable)
- More rigorous approach in [Lib22]
- lacktriangleright \Rightarrow must diagonalize $[\widetilde{H}]_{ij}=\langle \varphi_i|\,\hat{H}\,|\varphi_j
 angle$ given arbitrary orthonormal basis $\{|\varphi_k
 angle\}_{k=1}^\infty$
- Can be an infinite dimensional matrix
- $> \infty$ is a problem numerically

- > This principle applies to higher order eigenenergies
- > Idea: Consider orthogonal subspace to $|0\rangle$ and reapply Eq. (1)
- Can be done for all space (if it is separable)
- > More rigorous approach in [Lib22]
- lacksquare \Rightarrow must diagonalize $[\widetilde{H}]_{ij}=\langle arphi_i|\hat{H}\,|arphi_j
 angle$ given arbitrary orthonormal basis $\{|arphi_k
 angle\}_{k=1}^\infty$
- Can be an infinite dimensional matrix
- $> \infty$ is a problem numerically

- ightharpoonup Define a truncation parameter N_{max}
- > Approximate state as

$$|\psi
anglepprox\sum_{k=0}^{N_{\sf max}}c_k\,|arphi_k
angle$$

- Becomes finite-dimensional problem
- Recall: Curse of dimensionality!
- N_{max} needed to converge to real results scales exponentially with d
- > Approach: define a more flexible 'augmented basis' $\{|\varphi_i^A
 angle\}_i$
- > Reduce N_{max} needed when augmented basis is optimized

- ightharpoonup Define a truncation parameter N_{max}
- > Approximate state as

$$|\psi\rangle \approx \sum_{k=0}^{N_{\rm max}} c_k \, |\varphi_k\rangle$$

- Becomes finite-dimensional problem
- Recall: Curse of dimensionality
- $> N_{\rm max}$ needed to converge to real results scales exponentially with d
- > Approach: define a more flexible 'augmented basis' $\{|\varphi_i^A
 angle\}_i$
- Reduce N_{max} needed when augmented basis is optimized

- Define a truncation parameter N_{max}
- > Approximate state as

$$|\psi\rangle \approx \sum_{k=0}^{N_{\rm max}} c_k \, |\varphi_k\rangle$$

- Becomes finite-dimensional problem
- > Recall: Curse of dimensionality!
- N_{max} needed to converge to real results scales exponentially with d
- > Approach: define a more flexible 'augmented basis' $\{|\varphi_i^A
 angle\}_i$
- > Reduce N_{max} needed when augmented basis is optimized

- ightharpoonup Define a truncation parameter $N_{\sf max}$
- > Approximate state as

$$|\psi\rangle \approx \sum_{k=0}^{N_{\rm max}} c_k \, |\varphi_k\rangle$$

- > Becomes finite-dimensional problem
- > Recall: Curse of dimensionality!
- $> N_{\rm max}$ needed to converge to real results scales exponentially with d
- > Approach: define a more flexible 'augmented basis' $\{|\varphi_i^A\rangle\}_i$
- ightharpoonup Reduce N_{max} needed when augmented basis is optimized

- ightharpoonup Define a truncation parameter $N_{\sf max}$
- > Approximate state as

$$|\psi\rangle \approx \sum_{k=0}^{N_{\rm max}} c_k \, |\varphi_k\rangle$$

- Becomes finite-dimensional problem
- Recall: Curse of dimensionality!
- > $N_{\sf max}$ needed to converge to real results scales exponentially with d
- > Approach: define a more flexible 'augmented basis' $\{|\varphi_i^A\rangle\}_i$
- ightharpoonup Reduce N_{max} needed when augmented basis is optimized

- ightharpoonup Define a truncation parameter $N_{\sf max}$
- > Approximate state as

$$|\psi\rangle \approx \sum_{k=0}^{N_{\rm max}} c_k \, |\varphi_k\rangle$$

- Becomes finite-dimensional problem
- Recall: Curse of dimensionality!
- > $N_{\sf max}$ needed to converge to real results scales exponentially with d
- > Approach: define a more flexible 'augmented basis' $\{|\varphi_i^A\rangle\}_i$
- ightharpoonup Reduce N_{max} needed when augmented basis is optimized

- Define a truncation parameter N_{max}
- > Approximate state as

$$|\psi\rangle \approx \sum_{k=0}^{N_{\rm max}} c_k \, |\varphi_k\rangle$$

- Becomes finite-dimensional problem
- Recall: Curse of dimensionality!
- $ightharpoonup N_{ ext{max}}$ needed to converge to real results scales exponentially with d
- > Approach: define a more flexible 'augmented basis' $\{|\varphi_i^A\rangle\}_i$
- ightharpoonup Reduce N_{max} needed when augmented basis is optimized

Contents

- Machine Learning

- > Will start considering coordinate space: $|\psi\rangle \stackrel{c}{=} \psi(x)$
- > Define augmented basis as:

$$\varphi_k^A(x) = \varphi_k(g(x)) \cdot \sqrt{\det \left| \frac{\mathrm{d}g}{\mathrm{d}x} \right|}$$
 (2)

- > g is a Normalizing Flow
- > This preserves orthonormality

- > Will start considering coordinate space: $|\psi\rangle \stackrel{\triangle}{=} \psi(x)$
- > Define augmented basis as:

$$\varphi_k^A(x) = \varphi_k(g(x)) \cdot \sqrt{\det \left| \frac{\mathrm{d}g}{\mathrm{d}x} \right|}$$
 (2)

- > g is a Normalizing Flow
- > This preserves orthonormality

- > Will start considering coordinate space: $|\psi\rangle \stackrel{\triangle}{=} \psi(x)$
- > Define augmented basis as:

$$\varphi_k^A(x) = \varphi_k(g(x)) \cdot \sqrt{\det \left| \frac{\mathrm{d}g}{\mathrm{d}x} \right|}$$
 (2)

- > g is a Normalizing Flow
- > This preserves orthonormality

- Will start considering coordinate space: $|\psi\rangle = \psi(x)$
- Define augmented basis as:

$$\varphi_k^A(x) = \varphi_k(g(x)) \cdot \sqrt{\det \left| \frac{\mathrm{d}g}{\mathrm{d}x} \right|}$$
 (2)

- q is a Normalizing Flow
- This preserves orthonormality

$$\langle \varphi_k^A | \varphi_k^A \rangle = \int \mathrm{d} x \varphi_i(g(x)) \varphi_j(g(x)) \cdot \det \left| \frac{\mathrm{d} g}{\mathrm{d} x} \right| = \int \mathrm{d} g \left| \frac{\mathrm{d} x}{\mathrm{d} g} \right| \varphi_i(g) \varphi_j(g) \cdot \det \left| \frac{\mathrm{d} g}{\mathrm{d} x} \right| = \delta_{i,j}$$

- Will start considering coordinate space: $|\psi\rangle \stackrel{\triangle}{=} \psi(x)$
- Define augmented basis as:

$$\varphi_k^A(x) = \varphi_k(g(x)) \cdot \sqrt{\det \left| \frac{\mathrm{d}g}{\mathrm{d}x} \right|}$$
 (2)

- > q is a Normalizing Flow
- This preserves orthonormality

Proof.

$$\langle \varphi_k^A | \varphi_k^A \rangle = \int \mathrm{d} x \varphi_i(g(x)) \varphi_j(g(x)) \cdot \det \left| \frac{\mathrm{d} g}{\mathrm{d} x} \right| = \int \mathrm{d} g \left| \frac{\mathrm{d} x}{\mathrm{d} g} \right| \varphi_i(g) \varphi_j(g) \cdot \det \left| \frac{\mathrm{d} g}{\mathrm{d} x} \right| = \delta_{i,j}$$

- > Basic idea: A chain of diffeomorphisms
- Invertible and differentiable

$$z = (f_n \circ f_{n-1} \circ \cdots \circ f_1)(x)$$

- > Several different paradigms
- Need to find which ones best improve flexibility of basis states
- > We concentrate on RNVP

- > Basic idea: A chain of diffeomorphisms
- Invertible and differentiable

$$z = (f_n \circ f_{n-1} \circ \cdots \circ f_1)(x)$$

- Several different paradigms
- Need to find which ones best improve flexibility of basis states
- > We concentrate on RNVP

- > Basic idea: A chain of diffeomorphisms
- Invertible and differentiable

$$z = (f_n \circ f_{n-1} \circ \cdots \circ f_1)(x)$$

- > Several different paradigms
- Need to find which ones best improve flexibility of basis states
- > We concentrate on RNVP

- Basic idea: A chain of diffeomorphisms
- Invertible and differentiable

$$z = (f_n \circ f_{n-1} \circ \cdots \circ f_1)(x)$$

- > Several different paradigms
- Need to find which ones best improve flexibility of basis states
- > We concentrate on RNVP

- > Basic idea: A chain of diffeomorphisms
- > Invertible and differentiable

$$z = (f_n \circ f_{n-1} \circ \cdots \circ f_1)(x)$$

- > Several different paradigms
- Need to find which ones best improve flexibility of basis states
- > We concentrate on RNVP

- The Real-valued Non-Volume-Preserving model
- > Let \mathcal{P}_k be a projection over half of the basis vectors and $\mathcal{Q}_k \equiv \mathbb{1} \mathcal{P}_k$
- > layer $g_k(x)$ is given by

$$g_k(x) = \mathcal{P}_k[x] + \mathcal{Q}_k[f_k(x)] \quad \text{with}$$

$$f_k(x) = e^{s_k(\mathcal{P}_k[x])} \odot x + t_k(\mathcal{P}_k[x])$$
(3)

Inverse can be shown rigorously

$$z = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} x_1 \cdot s_2(x_2) + t_2(x_2) \\ x_2 \end{bmatrix}$$

inverse is equally efficient:

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} (z_1 - t_2(z_2))/s(z_2) \\ z_2 \end{bmatrix}$$

- The Real-valued Non-Volume-Preserving model
- > Let \mathcal{P}_k be a projection over half of the basis vectors and $\mathcal{Q}_k \equiv \mathbb{1} \mathcal{P}_k$
- > layer $g_k(x)$ is given by

$$g_k(x) = \mathcal{P}_k[x] + \mathcal{Q}_k[f_k(x)]$$
 with $f_k(x) = e^{s_k(\mathcal{P}_k[x])} \odot x + t_k(\mathcal{P}_k[x])$ (3)

Inverse can be shown rigorously

$$z = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} x_1 \cdot s_2(x_2) + t_2(x_2) \\ x_2 \end{bmatrix}$$

inverse is equally efficient:

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} (z_1 - t_2(z_2))/s(z_2) \\ z_2 \end{bmatrix}$$

- The Real-valued Non-Volume-Preserving model
- > Let \mathcal{P}_k be a projection over half of the basis vectors and $\mathcal{Q}_k \equiv \mathbb{1} \mathcal{P}_k$
- > layer $g_k(x)$ is given by

$$g_k(x) = \mathcal{P}_k[x] + \mathcal{Q}_k[f_k(x)] \quad \text{with}$$

$$f_k(x) = e^{s_k(\mathcal{P}_k[x])} \odot x + t_k(\mathcal{P}_k[x])$$
(3)

Inverse can be shown rigorously

$$z = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} x_1 \cdot s_2(x_2) + t_2(x_2) \\ x_2 \end{bmatrix}$$

inverse is equally efficient:

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} (z_1 - t_2(z_2))/s(z_2) \\ z_2 \end{bmatrix}$$

- > The Real-valued Non-Volume-Preserving model
- > Let \mathcal{P}_k be a projection over half of the basis vectors and $\mathcal{Q}_k \equiv \mathbb{1} \mathcal{P}_k$
- > layer $g_k(x)$ is given by

$$g_k(x) = \mathcal{P}_k[x] + \mathcal{Q}_k[f_k(x)] \quad \text{with}$$

$$f_k(x) = e^{s_k(\mathcal{P}_k[x])} \odot x + t_k(\mathcal{P}_k[x])$$
(3)

Inverse can be shown rigorously

$$z = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} x_1 \cdot s_2(x_2) + t_2(x_2) \\ x_2 \end{bmatrix}$$

inverse is equally efficient:

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} (z_1 - t_2(z_2))/s(z_2) \\ z_2 \end{bmatrix}$$

Contents

- Introduction
- > Physics
- > Machine Learning
- > Mathematics
- > Results

How do we know $\sum_{k=0}^{\infty} c_k \varphi_k^A$ converges to the real result as $N_{\sf max} o \infty$?

- > Let *g* be the normalizing flow
- ullet Analogous to showing $f\circ g\in\mathcal{S}\ \forall f\in\mathcal{S}$
- $> \mathcal{S}$ are rapidly decreasing, infinitely differentiable functions

$$\equiv \left\{ f \in C^{\infty} \mid \|x^{\beta} \cdot \frac{\partial^{\alpha}}{\partial^{\alpha}}\| < \infty \right\}$$

- > If g is RNVP (with a slight modification), then $f \circ g \in \mathcal{S}$
- > For now only in 1 dimensional case
- > Proof left as an exercise to the reader

How do we know $\sum_{k=0}^{\infty} c_k \varphi_k^A$ converges to the real result as $N_{\sf max} o \infty$?

- > Let *g* be the normalizing flow
- > Analogous to showing $f \circ g \in \mathcal{S} \ \forall f \in \mathcal{S}$
- > S are rapidly decreasing, infinitely differentiable functions

$$\equiv \left\{ f \in C^{\infty} \mid \|x^{\beta} \cdot \frac{\partial^{\alpha}}{\partial^{\alpha}}\| < \infty \right\}$$

- > If g is RNVP (with a slight modification), then $f \circ g \in \mathcal{S}$
- > For now only in 1 dimensional case
- > Proof left as an exercise to the reader

How do we know $\sum_{k=0}^{\infty} c_k \varphi_k^A$ converges to the real result as $N_{\mathsf{max}} \to \infty$?

- > Let *g* be the normalizing flow
- > Analogous to showing $f \circ g \in \mathcal{S} \ \forall f \in \mathcal{S}$
- > S are rapidly decreasing, infinitely differentiable functions

$$\equiv \left\{ f \in C^{\infty} \mid \|x^{\beta} \cdot \frac{\partial^{\alpha}}{\partial^{\alpha}}\| < \infty \right\}$$

- > If g is RNVP (with a slight modification), then $f \circ g \in \mathcal{S}$
- > For now only in 1 dimensional case
- > Proof left as an exercise to the reader

How do we know $\sum_{k=0}^{\infty} c_k \varphi_k^A$ converges to the real result as $N_{\mathsf{max}} \to \infty$?

- > Let *g* be the normalizing flow
- > Analogous to showing $f \circ g \in \mathcal{S} \ \forall f \in \mathcal{S}$
- > S are rapidly decreasing, infinitely differentiable functions

$$\equiv \left\{ f \in C^{\infty} \mid \|x^{\beta} \cdot \frac{\partial^{\alpha}}{\partial^{\alpha}}\| < \infty \right\}$$

- > If g is RNVP (with a slight modification), then $f \circ g \in \mathcal{S}$
- > For now only in 1 dimensional case
- > Proof left as an exercise to the reader

How do we know $\sum_{k=0}^{\infty} c_k \varphi_k^A$ converges to the real result as $N_{\mathsf{max}} \to \infty$?

- > Let *g* be the normalizing flow
- > Analogous to showing $f \circ g \in \mathcal{S} \ \forall f \in \mathcal{S}$
- > S are rapidly decreasing, infinitely differentiable functions

$$\equiv \left\{ f \in C^{\infty} \mid \|x^{\beta} \cdot \frac{\partial^{\alpha}}{\partial^{\alpha}}\| < \infty \right\}$$

- > If g is RNVP (with a slight modification), then $f \circ g \in \mathcal{S}$
- For now only in 1 dimensional case
- > Proof left as an exercise to the reader

How do we know $\sum_{k=0}^{\infty} c_k \varphi_k^A$ converges to the real result as $N_{\sf max} o \infty$?

- > Let *g* be the normalizing flow
- > Analogous to showing $f \circ g \in \mathcal{S} \ \forall f \in \mathcal{S}$
- > S are rapidly decreasing, infinitely differentiable functions

$$\equiv \left\{ f \in C^{\infty} \mid \|x^{\beta} \cdot \frac{\partial^{\alpha}}{\partial^{\alpha}}\| < \infty \right\}$$

- > If g is RNVP (with a slight modification), then $f \circ g \in \mathcal{S}$
- > For now only in 1 dimensional case
- > Proof left as an exercise to the reader

How do we know $\sum_{k=0}^{\infty} c_k \varphi_k^A$ converges to the real result as $N_{\mathsf{max}} \to \infty$?

- > Let *g* be the normalizing flow
- ullet Analogous to showing $f\circ g\in\mathcal{S}\ \forall f\in\mathcal{S}$
- > S are rapidly decreasing, infinitely differentiable functions

$$\equiv \left\{ f \in C^{\infty} \mid \|x^{\beta} \cdot \frac{\partial^{\alpha}}{\partial^{\alpha}}\| < \infty \right\}$$

- > If g is RNVP (with a slight modification), then $f \circ g \in \mathcal{S}$
- > For now only in 1 dimensional case
- > Proof left as an exercise to the reader

Contents

- Introduction
- > Physics
- Machine Learning
- > Mathematics
- > Results

- We compared results in H2S molecule
- Normalizing Flows greatly improved stretching case (Fig. 3)
- > RNVP behaves similarly to IResNet
- Possibly perform better on higher dimensional data
- Outperform no-neural-network (LIN)

- We compared results in H2S molecule
- Normalizing Flows greatly improved stretching case (Fig. 3)
- > RNVP behaves similarly to IResNet
- Possibly perform better on higher dimensional data
- Outperform no-neural-network (LIN)

- We compared results in H2S molecule
- Normalizing Flows greatly improved stretching case (Fig. 3)
- > RNVP behaves similarly to IResNet
- Possibly perform better on higher dimensional data
- Outperform no-neural-network (LIN)

- We compared results in H2S molecule
- Normalizing Flows greatly improved stretching case (Fig. 3)
- > RNVP behaves similarly to IResNet
- Possibly perform better on higher dimensional data
- Outperform no-neural-network (LIN)

- We compared results in H2S molecule
- Normalizing Flows greatly improved stretching case (Fig. 3)
- > RNVP behaves similarly to IResNet
- Possibly perform better on higher dimensional data
- Outperform no-neural-network (LIN)

Figure: RNVP performance vs No neural network (--)

RNVP clearly outperformed on H2S

Figure: RNVP performance vs No neural network (--)

> RNVP clearly outperformed on H2S

Thank you!

Contact

Deutsches Elektronen-Synchrotron DESY Nicolas Mendoza © 0000-0001-5561-1392 CMI snmendozav@gmail.com

www.desy.de

+49-152-2768-2024

References

- [KPB19] Ivan Kobyzev, Simon J. D. Prince, and Marcus A. Brubaker. "Normalizing Flows: An Introduction and Review of Current Methods". In: (2019). DOI: 10.1109/TPAMI.2020.2992934. eprint: arXiv:1908.09257.
- [Köt21] Ullrich Köthe. Introduction to Normalizing Flows. Mar. 2021.
- [Lib22] Libretexts. 7.2: Linear variational method and the secular determinant. July 2022.
- [Lip22] Phillip Lippe. Tutorial 11: Normalizing flows for image modeling. 2022. URL: https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial11/NF_image_modeling.html.

