

DESY 2022 Summer Student project Matilde Carminati, University of Pisa Supervisor: Daniel Pitzl

Super KEKB:

asymmetric e⁺e⁻ collider in Japan operating since 2019 with 4+7 GeV at the Y(4S) resonance, producing pairs of B mesons as well as charm and tau particles

Integrated luminosity: 204 fb⁻¹ (2020-2021)

Belle II Detector

KL and muon detector:
Resistive Plate Counter (barrel)
Scintillator + WLSF + MPPC (end-caps)

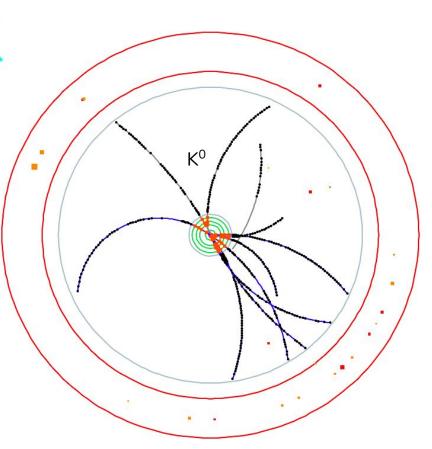
electron (7GeV)

CsI(TI), waveform sampling (barrel)
Pure CsI + waveform sampling (end-caps)

Beryllium beam pipe 2cm diameter

EM Calorimeter:

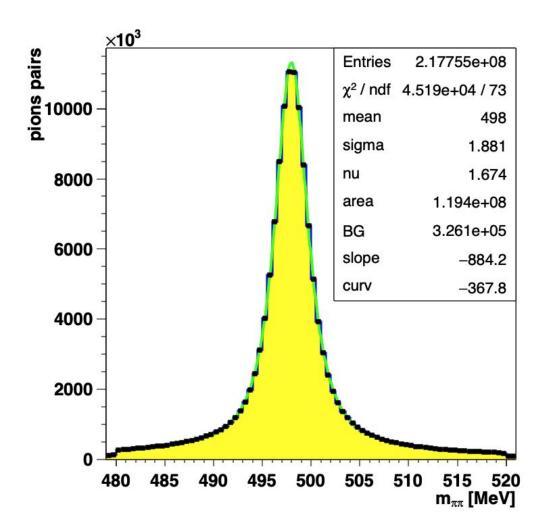
Vertex Detector
2 layers DEPFET + 4 layers DSSD


Central Drift Chamber He(50%):C₂H₆(50%), Small cells, long lever arm, fast electronics Particle Identification

Time-of-Propagation counter (barrel)
Prox. focusing Aerogel RICH (fwd)

positron (4GeV)

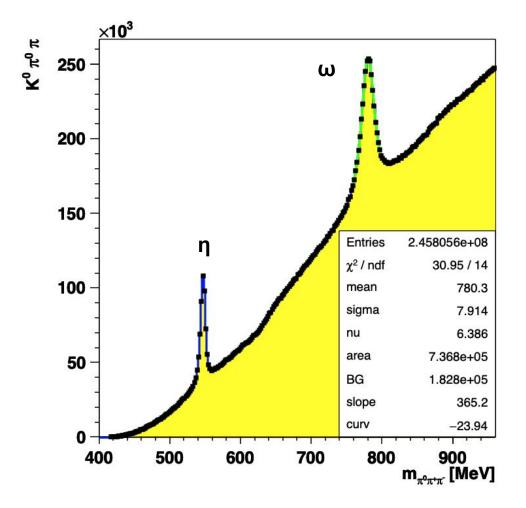
superconducting solenoid 1.5 T


K⁰ candidate

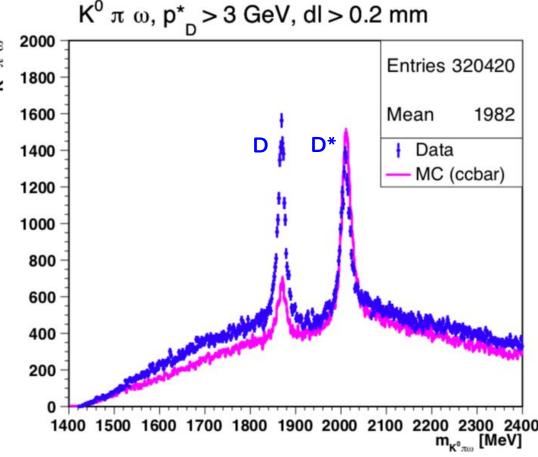
$K_S^0 \pi^+ \eta$ $(1.31 \pm 0.05)\%$ 2022 PDG $K_{S}^{0}\pi^{+}\eta'(958)$ $(1.90 \pm 0.21) \times 10^{-3}$ table for D⁺ $K^{-}2\pi^{+}\pi^{0}$ $(6.25 \pm 0.18)\%$ $K_S^0 2\pi^+\pi^ (3.10 \pm 0.09)\%$ $K^-2\pi^+\eta$ $(1.35 \pm 0.12) \times 10^{-3}$ $K_S^0 \pi^+ \pi^0 \eta$ $K_{s}^{0}\pi^{+}\omega$ is $(1.22 \pm 0.25) \times 10^{-3}$ missing $K^{-}3\pi^{+}\pi^{-}$ $(5.7 \pm 0.5) \times 10^{-3}$ $\overline{K}^*(892)^0 2\pi^+\pi^-$, $(1.2 \pm 0.4) \times 10^{-3}$ $K^0_{\varsigma}\omega$ is also an $\overline{K}^*(892)^0 \to K^-\pi^+$ important $\overline{K}^*(892)^0 \rho^0 \pi^+$ $(2.3 \pm 0.4) \times 10^{-3}$ $\overline{K}^*(892)^0 \to K^-\pi^+$ channel in $\overline{K}^*(892)^0 a_1(1260)^+$ charmless B [nn] (9.3 \pm 1.9) \times 10⁻³ $K^{-} \rho^{0} 2\pi^{+}$ $(1.72 \pm 0.28) \times 10^{-3}$ decays with $K^-3\pi^+\pi^-$ nonresonant $(4.0 \pm 2.9) \times 10^{-4}$ evidence for CP $K^{+}2K_{5}^{0}$ $(2.54 \pm 0.13) \times 10^{-3}$ violation seen $K^{+}K^{-}K_{S}^{0}\pi^{+}$ $(2.4 \pm 0.5) \times 10^{-4}$ by Belle

$K^0_{\ S} \rightarrow \pi^+\pi^-$ selection

- 2 oppositely charged pion tracks
- displaced from the beam
- intersecting in the xy plane
- match in z at the intersection point


$\pi^0 \rightarrow \gamma \gamma$ selection

- 2 ECL clusters without tracks pointing to them
- cluster shape consistent with electromagnetic shower
- the mass is slightly below PDG (135 MeV) but has a better resolution (5.7 MeV)


$\omega \to \pi^+\pi^-\pi^0$ selection

- \bullet π^0 and 2 oppositely charged pion tracks
- ω mass peak at 780 MeV(η at 548 MeV)

 $D{\to} K^0 \omega \pi$

- \bullet K^0 , ω and one pion track
- \diamond vertex fit for 3 charged pions (two from ω) and cut on the transverse decay length from the beam
- p* is momentum in the center of momentum frame
- D⁺ signal at 1870 MeV in data (much smaller signal in simulation)
- * (also observe $D^* \rightarrow D^0\pi$ with $D^0 \rightarrow K^0\omega$ at 2010 MeV)

Measurement of a branching fraction

Production rate: $N = \sigma_{D+} L A \epsilon B$

 σ = production cross section

L = luminosity

A = detector and selection acceptance (cuts)

 ε = detection efficiency

B = branching fraction

for signal and reference channel(s)

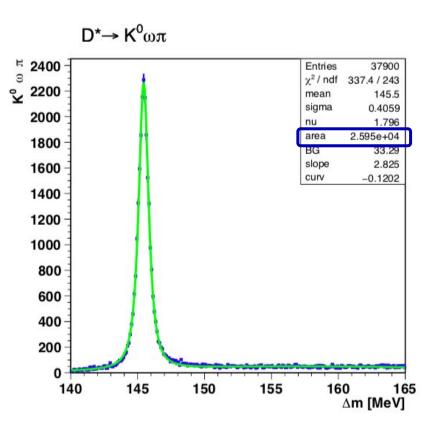
assuming good generator and good detector simulation:

$$(\sigma_{D+} A \epsilon B)^{ref}_{data} = (\sigma_{D+} A \epsilon B)^{ref}_{sim}$$

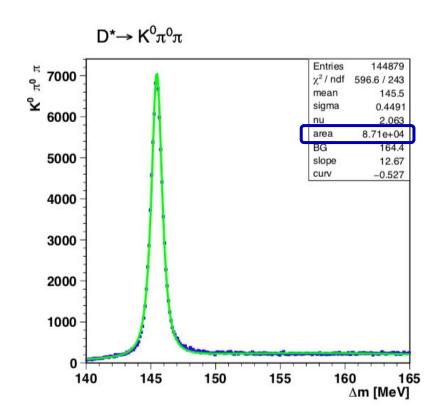
the same for the signal channel, but now we assume:

$$(\sigma_{D+} A \epsilon)^{sig}_{data} = (\sigma_{D+} A \epsilon)^{sig}_{sim}$$

Belle II event generator:

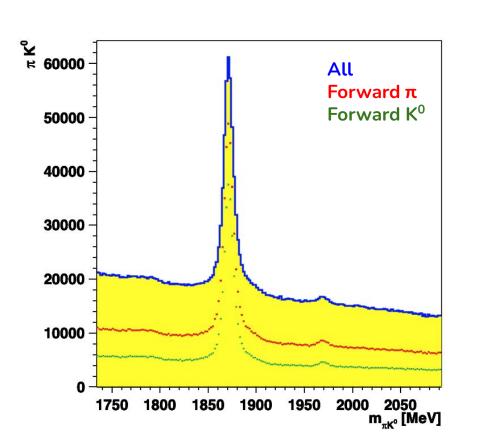

$$B^{sig}_{sim}(D \to K^0_S \pi \omega) = 0.19255\%$$

$$\Rightarrow \frac{N_{data}^{ref}}{N_{sim}^{ref}} = \frac{L_{data}}{L_{sim}}$$

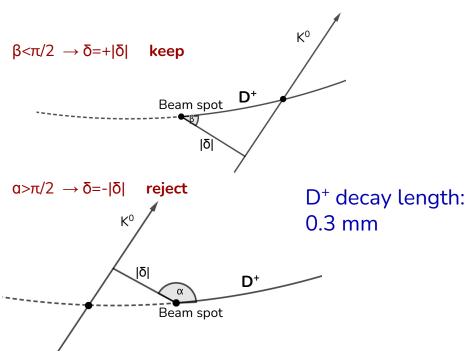

$$\Rightarrow \frac{N_{data}^{sig}}{N_{sim}^{sig}} = \frac{L_{data}}{L_{sim}} \frac{B_{data}^{sig}}{B_{sim}^{sig}}$$

$$\frac{B_{data}^{sig}}{B_{sim}^{sig}} = \frac{N_{data}^{sig}}{N_{sim}^{sig}} / \frac{N_{data}^{ref}}{N_{sim}^{ref}}$$

Reference channels



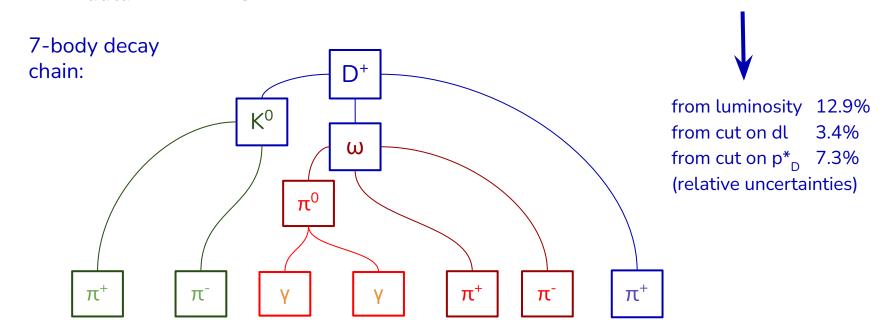
$\Delta m = m_{K^0 \pi^0 \pi} - m_{K^0 \pi^0}$



Background reduction

Signed impact parameter:

Systematic variations from cuts

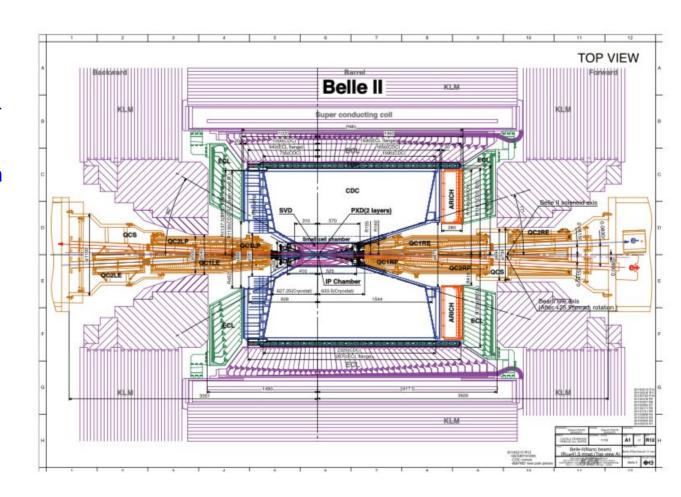

signal cuts	peak area data [10³]	peak area MC [10 ³]	Data/MC	Stability
p*>2.5, dl>0.2	16.1±0.9	8.9±0.7	1.80±0.17	1.15±0.14
p* > 3.5, dl>0.2	8.0±0.5	4.22±0.25	1.88±0.16	1.10±0.13
p* > 3, dl>0.2	13.5±0.9	6.54±0.34	2.07±0.17	1.00±0.11
p* > 3, dl>0.1	16.7±1.3	8.2±0.6	2.03±0.22	1.02±0.14
p* > 3, dl>0.3	11.1±0.6	5.7±0.4	1.94±0.17	1.07±0.13

Systematic variations from reference channels

Channel	peak area data [10³]	peak area MC [10 ³]	data / MC
ref D $\rightarrow K^0_S \pi^0 \pi$	227.1±1.3	379.6±2.2	L = 0.598±0.005
ref $D^0 \to K^0_S \omega$	117.9±0.8	221.0±0.9	L = 0.533±0.004
ref $D^0 \rightarrow K^0_S \pi^0$	245.2±1.3	442.6±1.2	L = 0.554±0.003
ref D* \rightarrow $K^0_S \pi^0 \pi$	227.1±1.3	379.6±2.2	L = 0.598±0.005
ref D* \rightarrow K ⁰ _S ωπ	25.95±0.21	57.1±0.3	L = 0.454±0.004

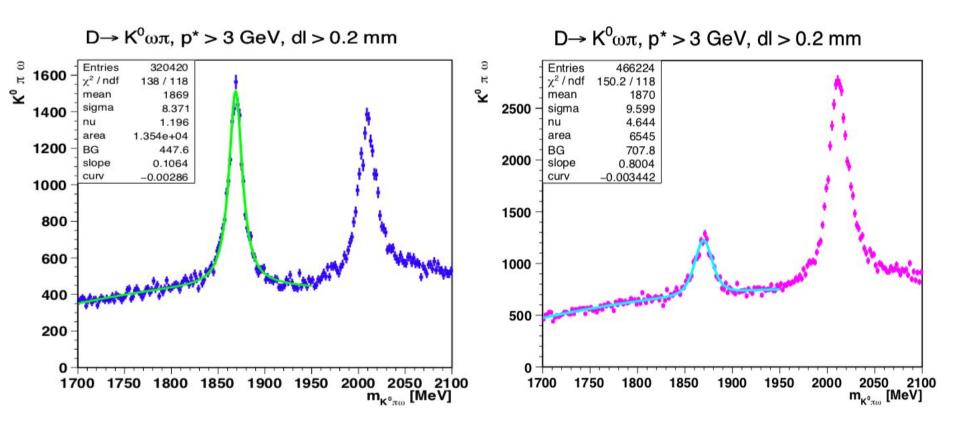
$$B_{data}^{sig} = rac{N_{data}^{sig}}{N_{sim}^{sig}} rac{B_{sim}^{sig}}{L}$$
 Belle II event generator: $B_{sim}^{sig}(D
ightarrow K_{sim}^{0} \pi \omega) = 0.19255\%$

 $B^{sig}_{data}(D \rightarrow K^{0}_{S}\pi\omega) = (0.79 \pm 0.03(stat) \pm 0.12(syst))\%$

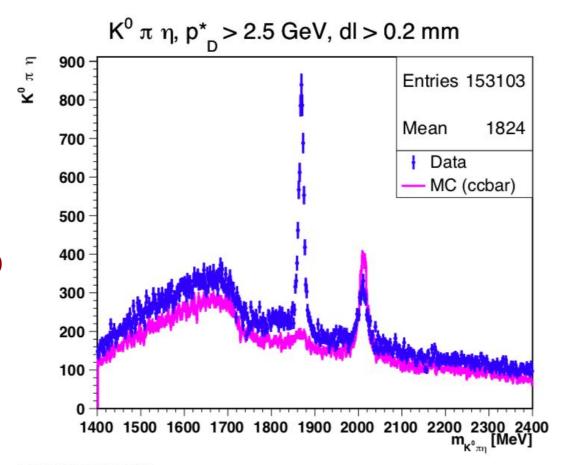


Thank you for the attention.

Backup slides

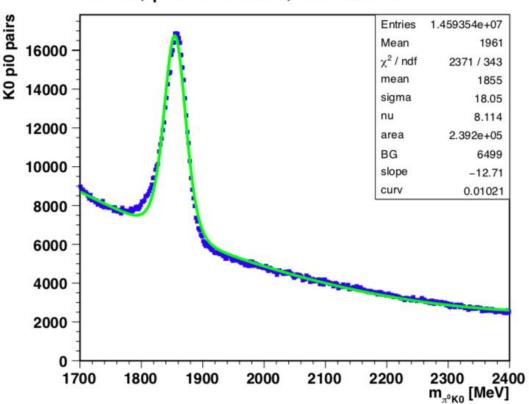

Belle II detector:

- vertex detector(pixels and strips)
- central drift chamber
- TOP and ARICH for particle identification
- electromagnetic calorimeter ECL
- superconducting solenoid magnet
- muon detector KLM
- trigger and DAQ system


Experiment number	Recorded integrated luminosity [fb ⁻¹]
12 (2020)	63.58
14 (2020)	15.90
16-18 (2021)	124.17

$D^+ \rightarrow K^0 \omega \pi$ in data and simulation

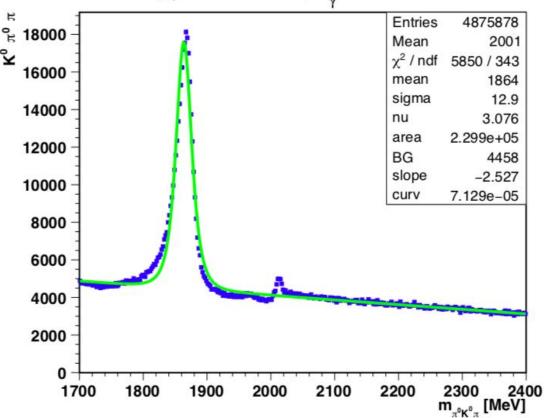
Related channel $D \rightarrow K^0 \eta \pi$


BF measured by BES III in 2020 not yet included in MC14rd

Reference channel $D^0 \rightarrow K^0 \pi^0$

$$A_{\text{peak}} = (239.2 \pm 1.1)10^3$$

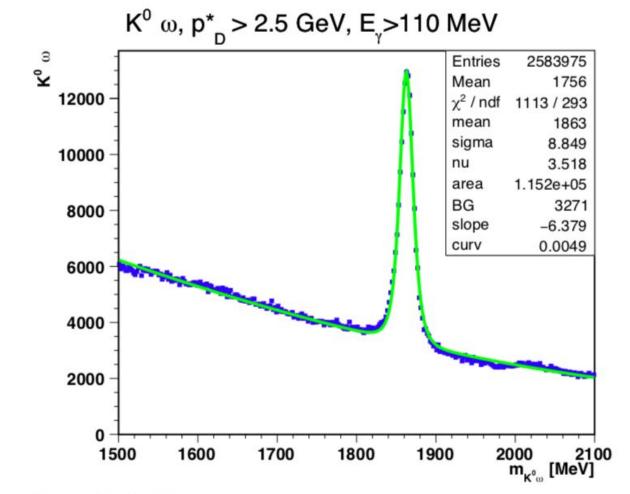
$\pi^{0} \text{ K}^{0}, p^{*} > 2.5 \text{ GeV}, \text{ forward K}^{0}$

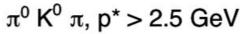


Mon Aug 29 12:11:05 2022

Reference channel $D \rightarrow K^0 \pi^0 \pi$

$$A_{\text{peak}} = (229.9 \pm 1.0)10^3$$

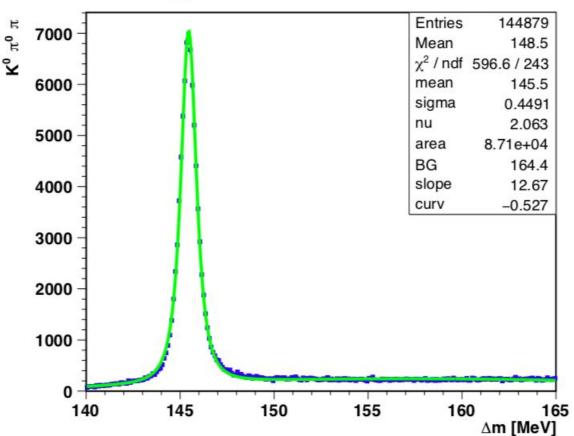




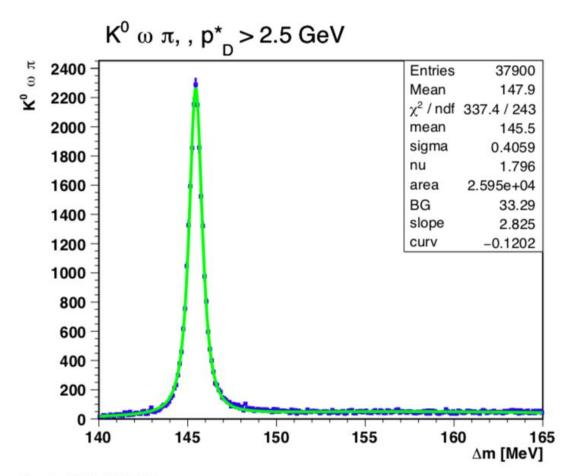
Mon Aug 29 12:11:05 2022

Reference channel $D^0 \rightarrow K^0 \omega$

$$A_{\text{peak}} = (115.2 \pm 0.7)10^3$$



$$A_{\text{peak}} = (87.1 \pm 0.4)10^3$$


$$\Delta m = m_{K^0 \pi^0 \pi} - m_{K^0 \pi^0}$$

Reference channel $D^* \rightarrow K^0 \omega \pi$

$$A_{\text{peak}} = (25.95 \pm 0.21)10^3$$

$$\Delta m = m_{K^0 \omega \pi} - m_{K^0 \omega}$$

$D \to K^0 \omega \pi$ branching fraction

Reference channel	Data/MC for $D^+ \to K^0_{\ S} \omega \pi$	BF (D ⁺ \rightarrow K ⁰ _S $\omega\pi$) [%]
$D \rightarrow K^0_S \pi^0 \pi$	3.46±0.28	0.67±0.05
$D^0 \rightarrow K^0_S \omega$	3.88±0.32	0.75±0.06
$D^0 \rightarrow K^0_S \pi^0$	3.73±0.30	0.72±0.06
$D^* \rightarrow K^0_S \pi^0 \pi$	4.4±0.4	0.84±0.07
$D^* \to K^0_S \omega \pi$	4.6±0.4	0.88±0.07