

Production of W and Z Bosons and of W/Z+Jets at CMS

Efe Yazgan

Texas Tech University

On behalf of the CMS Collaboration

Standard Model Benchmarks at High-Energy Hadron Colliders 15-17 June 2011 DESY (Zeuthen)

Electroweak Physics at the LHC

Selected EWK Results from CMS

- W/Z Inclusive Cross Sections
- W Charge Asymmetry
- Z Differential Cross Sections
- Drell-Yan process, AFB and Weinberg Angle
 - V+Jets
- Z+b jets
- W Polarization
- V+γ Production
- WW Production
- Understanding EWK production is essential before any discovery claims.
 - The production of W and Z bosons decaying into leptons is one of the best understood processes at the colliders.
 - Standard Candles and Backgrounds in searches for new particles
- EWK measurements are used to constrain PDFs.
- High p_T leptons from W's and Z's are used to understand efficiency, resolution, energy scale, and in general understanding the detector.

Particles Reconstruction, ID and Event Selection

Particle-Flow Algorithm combines data from all sub-detectors to identify and reconstruct all particles from the collision; charged/neutral hadrons, photons, muons, electrons. Resulting list of particles are then used to construct jets, MET, taus, ..

٠

•

CMS-PAS-EWK-10-005

$W \rightarrow e \nu, \mu \nu$

- W signal extracted from fits to the MET distributions.
- QCD background shape modeled from data inverting lepton ID and isolation cuts.
- Signal MET shapes from simulation for W⁺ and W⁻ corrected event-by-event vs p_T^W determined from hadronic recoil response and resolution distributions of Z→*I⁺I⁻* from data.

σxBR=10.31±0.02(stat) ±0.13(sys) ±0.41(lumi) nb

 $Z \rightarrow e^+ e^-, \mu^+ \mu^-$

CMS-PAS-EWK-10-005

Comparison with Theory

Individual cross sections, and their ratios agree well with theory predictions at NNLO.

Comparison with Theory

- Individual cross sections, and their ratios agree well with theory predictions at NNLO.
- The increase of the Z and W cross sections with energy is confirmed.

 $W \rightarrow \tau v$

Important for searches of a light Higgs boson, SUSY or extra dimensions, ...

→ τ_{had} : highly-collimated jet with 1 or 3 charged mesons and 0,1 or 2 neutral pions. → Single τ_{had} and MET trigger.

QCD multi-jet background is controlled by dividing the phase space defined by MET and $p_T(\tau)/\Sigma p_T(PF \text{ jets})$ into four regions.

Signal events from simulation: 174±3
EWK backgrounds from simulation: 46±2
QCD events from sideband: 109±6
Selected events in data: 372

Preliminary analysis provide a statistically significant signal on top of QCD multi-jet and electroweak backgrounds.

Comparison to Theory and Previous Measurements

Statistical uncertainties smaller than the systematic uncertainties.

 σ xBR measurements are compatible with each other, with NNLO predictions, Tevatron measurements, and CMS measurements with Z \rightarrow e⁺e⁻, $\mu^+\mu^-$ events.

W Lepton Charge Asymmetry

JHEP04 (2011) 050

$$\mathcal{A}(\eta) = \frac{\mathrm{d}\sigma/\mathrm{d}\eta(\mathrm{W}^+ \to \ell^+ \nu) - \mathrm{d}\sigma/\mathrm{d}\eta(\mathrm{W}^- \to \ell^- \bar{\nu})}{\mathrm{d}\sigma/\mathrm{d}\eta(\mathrm{W}^+ \to \ell^+ \nu) + \mathrm{d}\sigma/\mathrm{d}\eta(\mathrm{W}^- \to \ell^- \bar{\nu})}$$

Highly sensitive to PDFs due to the cancellation of systematic uncertainties.

A vs η can provide better understanding of u/d ratio and the sea antiquark densities at $\sqrt{s}=7$ TeV.

Flatter η -dependence than the PDF predictions. In each η -bin, precision < 1.6%. Already sufficiently small to improve global PDF fits.

Z Differential Cross Sections CMS-PAS-EWK-10-010

- An accurate description of the low and high p_T regions is essential for predicting the production rates and the kinematics. (Low $p_T \rightarrow$ multiple soft gluon emission. High p_T (pQCD) \rightarrow Sensitive to gluon PDFs.)
- Double differential measurements will provide the most strict constraints on the PDFs.

- Good agreement with FEWZ(NNLO) for p_T>20 GeV
- Disagreement for $p_T < 20$ GeV compared to POWHEG and different PYTHIA tunes.

Drell-Yan Mass Spectrum

DY process is an irreducible background to searches for new particles such as a Z'. Background to tt and di-boson processes.

Also allows test of perturbative QCD and precise measurements will constrain PDFs.

Spectrum in good agreement with NNLO prediction. NNLO essential for describing M <~30 GeV.

Z Forward-Backward Asymmetry

CMS-PAS-EWK-10-011

data (uncorrected)

CMS preliminary

36 pb⁻¹ at $\sqrt{s} = 7$ TeV

.2×10⁶

events / 0.08

0.8

0.6

 Z/γ^* couples to fermions both with vector and axial-vector components.

$$\frac{d\sigma}{d\cos\theta} = A(1+\cos^2\theta) + B\cos\theta$$

$$A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B} = \frac{N_F - N_B}{N_F + N_B} = \frac{3B}{8A}$$
$$A_{FB} = A_{FB}(M, Y, \sin^2 \theta_W, q - flavor)$$

Deviations from the SM prediction of AFB at high mass may indicate the existence of a new neutral gauge boson, quark-lepton compositeness, SUSY particles, ... AFB measurement can provide a precise measurement of $\sin^2\theta_w$. Precise AFB measurement can also constrain PDFs.

Weinberg Angle

CMS-PAS-EWK-10-011

Major systematic uncertainties due to resolution/alignment and QED FSR.

Fit result: $sin^2\theta_w$ =0.2287 +/- 0.0077 (stat.) +/- 0.0036 (sys.) consistent with SM predictions. Better precision than one can obtain from raw A_{FB} measurement.

V+Jets

- \rightarrow Provide fundamental tests of perturbative QCD.
- \rightarrow Important backgrounds for
 - any new physics
 - single top and tt (W+jets)
- \rightarrow Used to verify and tune ME+PS MC & NLO simulations.

Particle flow jets with anti- k_{τ} algorithm (cone size=0.5) with E_{τ} >30 GeV in the tracker acceptance. Unfolding to correct for the effects of jet-resolution.

Good agreement with ME calculation (MadGraph) and discrepancies with Pythia (as expected) for n > 1.

V+Jets: Berends-Giele "Scaling"

CMS-PAS-EWK-10-012

Leading-order prediction C_n =constant $\alpha \alpha_s^{-1}$.

NLO + phase space effects (for high n) $\rightarrow C_n = \alpha + \beta n$.

Fit to the data with $c(n)=\alpha+\beta n$:

Good agreement between W+jets and Z+jets and fair agreement with the simulations.

Z+*b jets*

Benchmark for associated production of Higgs boson with b-quarks and as a background to Higgs and new physics searches.

Precise measurement of Z+b can choose between fixed- and variable-flavour calculations.

b-tag discriminant chosen such that mis-tagging rate is High purity (ε ~20%): <0.1%. High efficiency (ε ~40%): <1%.

Yields from $Z(\rightarrow ll)$ +b-jet are in good agreement with MadGraph+Pythia predictions. Ratio $\sigma(Z+b)/\sigma(Z+j)$ is found to be in good agreement with NLO expectations. Both calculation schemes describe the data well – more events are needed to distinguish between them.

W Polarization

CMS-PAS-EWK-10-014 arXiv:1104.3829

- At high p_T the dominant production mechanism at the LHC is the quark-gluon initial state (only sea anti-quarks & more gluons than anti-quarks for x>0.1).
- V-A coupling \rightarrow left handed polarizations to quarks (relativistic limit).
 - W bosons are expected to be produced predominantly in a left-handed state at the LHC.
 - significant asymmetry in p_T^{ν} and charged lepton from W decays.

$$\frac{dN}{d\cos\theta^*} \propto (1+\cos^2\theta^*) + \frac{1}{2}A_0(1-3\cos^2\theta^*) + A_4\cos\theta^*$$

Helicity frame: polarization axis is defined to be along the W boson flight direction. θ^* = The angle between the polarization axis and the charged lepton decay direction in the W boson rest frame.

$$A_0 \propto f_0 \qquad A_4 \propto \pm (f_L - f_R) \qquad f = f(p_T^W, \eta^W)$$

Parameters f_L , f_R , f_0 determine the fractions of left, right, and longitudinal helicity states.

W Polarization

 $L_p = \frac{p_T(l) \bullet p_T(W)}{\left| \vec{p}_T(W) \right|^2}$

CMS-PAS-EWK-10-014 arXiv:1104.3829

Projected l

- → Reject tt: \leq 3 jets with p_T>30 GeV
- → Increase polarization: $p_T(W)>50 \text{ GeV}$

Difference between left- and right-handed polarization parameters 7.8σ for W⁺ and 5.1σ for W⁻. First observation that W bosons produced in pp collisions with large p_T are predominantly left-handed (for both charges) as expected in the SM.

V+*γProduction*

CMS-PAS-EWK-10-008 arXiv:1105.2758

- Zγ, Wγ production important test of SM because of its sensitivity to the selfinteraction between gauge bosons via TGC.
- Main backgrounds: *V+jets*, tt, QCD multijet

 $σ(Wγ+X)xB(W→lν)=56.3\pm5.0(stat.)\pm5.0(syst.)\pm2.3(lumi.) pb$ $σ(Zγ+X)xB(Z→ll)=9.4\pm1.0(stat.)\pm0.6(syst.)\pm0.4(lumi.) pb$ $E_T^{γ}>10$ GeV and ΔR(*l*,γ)>0.7 $M_{ll}>50$ GeV (Zγ)

Fake isolated photons estimated from V+jets.

Main systematic sources: photon and lepton energy scales, pile-up, PDFs, photon Id/iso., backgrounds.

 $W\gamma$ and $Z\gamma$ cross sections are in good agreement with NLO predictions. No evidence for anomalous WW γ , ZZ γ , and Z $\gamma\gamma$ trilinear gauge couplings.

WW Production

Phys. Lett. B 699 (2011) 25

Benchmark for Higgs boson search in H \rightarrow WW and limits on WW γ and WWZ anomalous couplings.

- DY \rightarrow ee,µµ veto: require MET and reject events within 15 GeV around Z mass peak.
- DY $\rightarrow \tau \tau$ veto: projected MET transverse to the closest lepton > 35 GeV
- Top quark veto: reject events with jets of $p_T > 25$ GeV, $|\eta| < 5$. + veto based on soft-muon and b-jet tagging
- Suppress WZ, ZZ, by rejecting events with >2 leptons.

13 signal events in data with estimated background of 3.3 ± 1.2 evts. $\sigma(WW)=41.1\pm15.3(stat)\pm5.8(syst)\pm4.5(lumi)$ consistent with the SM prediction.

WW Production: Higgs Boson Search

- $\Delta \phi_{\parallel}$ provides the best discriminating power.
- Cut based and Boosted Decision Tree (BDT) technique
- Additional backgrounds: WH,WZ, tt, VBF \rightarrow by 0-jet and <=2 lepton requirements.
- Systematic uncertainty
 - − signal yield ~14% \rightarrow due to jet veto efficiency and luminosity uncertainty.
 - Background (in signal region) ~ 40% dominated by statistical uncertainties in the control regions.

No access above the SM expectations.

No Higgs boson in a 4-generation SM scenario in the range 144-207 GeV with 95% C.L.

Summary

CMS preliminary	36 pb ⁻¹ at $\sqrt{s} = 7$ TeV			
lumi. uncertainty: ±4%				
σ×B(W)	0.988 ± 0.009 _{exp} ± 0.050 _{theo}			
σ×B(W⁺) ⊢	0.982 ± 0.017 exp ± 0.049 theo			
σ×B(W ⁻)	0.993 ± 0.019 _{exp} ± 0.054 _{theo}			
σ×B(Z)	$1.003 \pm 0.010 \exp \pm 0.047 $ theo			
$\sigma \times B(Z \to \tau \tau)$	1.029 ± 0.097 _{exp} ± 0.043 _{theo}			
σ×B(Wγ)	1.121 ± 0.177 _{exp} ± 0.077 _{theo}			
σ×B(Ζγ)	0.969 ± 0.121 _{exp} ± 0.042 _{theo}			
σ×B(WW) μ	$0.956 \pm 0.381_{exp} \pm 0.007_{theo}$			
R _{W/Z}	$0.981 \pm 0.018 \text{ exp} \pm 0.015 \text{ theo}$			
R _{W±} HeH	$0.994 \pm 0.013 \exp \pm 0.035 $ theo			
$W_{jet} \rightarrow ev \alpha$	$0.894 \pm 0.097 \exp \pm 0.017 $ theo			
$W_{jet} \rightarrow \mu \nu \alpha$	$0.833 \pm 0.088 \exp \pm 0.017 $ theo			
$Z_{jet} \rightarrow ee \alpha$	0.992 ± 0.199 _{exp} ± 0.020 _{theo}			
$Z_{jet} \rightarrow \mu \mu \alpha$	1.208 ± 0.280 _{exp} ± 0.021 _{theo}			
Z _{b-jet} /Z _{jet} (→ ee)	1.059 ± 0.281 _{exp} ± 0.167 _{theo}			
$Z_{b-jet}/Z_{jet}(\rightarrow \mu\mu)$	1.000 ± 0.272 _{exp} ± 0.185 _{theo}			
sin ² θw μαμ	0.989 ± 0.037 _{exp} ± 0.001 _{theo}			
0.5 1 1.	5 2			
Ratio (CMS/Theory)				

Conclusions

- With 36 pb⁻¹ of data at 7 TeV, CMS has made fundamental measurements of the benchmark SM processes of W and Z production
 - Differential cross sections, Drell-Yan production
 - Asymmetries: W charge asymmetry and polarization, Z forward/ backward asymmetry and Weinberg angle measurement.
 - V+jets including Z+b-jet measurement.
 - WW,Wy,Zy and measurements of anomalous triple gauge boson couplings.
- All results are in good agreement with SM predictions.

Standard Model benchmarks established. Many new measurements to come from the already collected > 700 pb^{-1} .

Compact Muon Solenoid(CMS)

27

W/Z Systematic Uncertainties in Electron and Muon Final States

Source	$W \to e \nu$	$W ightarrow \mu \nu$	$Z \rightarrow e^+ e^-$	$Z ightarrow \mu^+ \mu^-$
Lepton reconstruction & identification	1.3	0.9	1.8	n/a
Trigger pre-firing	n/a	0.5	n/a	0.5
Momentum scale & resolution	0.5	0.22	0.12	0.35
$\not\!$	0.3	0.2	n/a	n/a
Background subtraction / modeling	0.35	0.4	0.14	0.28
Total experimental	1.5	1.1	1.8	0.7
PDF uncertainty for acceptance	0.6	0.7	0.9	1.2
Other theoretical uncertainties	0.7	0.8	1.4	1.6
Total theoretical	0.9	1.1	1.7	2.0
Total	1.7	1.6	2.5	2.1

Electron Identification in HF

• HF is located about 11 m from the interaction point, covers $3 < |\eta| < 5$ with depth of 10 λ_{int}

No tracker in front of HF.

• Consists of iron absorber embedded with quartz fibers parallel to the beam direction in a 5x5 mm matrix

Electrons in HF can be identified using longitudinal and transverse shower shape variables: **Isolation:** $E(L+S)_{3x3}/E(L+S)_{5x5} > XX$, **Compactness:** $E(L_{core})/E(L_{3x3})-cE_s/E_L = (shower shape) - c(shower depth) > XX$

WW Production: Limits on WWy and WWZ Anomalous Couplings

- Effective Lagrangian with HISZ parametrization without form factors.
 - $-\lambda_Z, \kappa_{\gamma}$, and g_1^Z describe all the operators.
 - In SM, $\lambda_Z = 0$, $\kappa_{\gamma} = g_1^Z = 1$. $\rightarrow \Delta \kappa_{\gamma}$ and Δg_1^Z : deviation from SM.

Two different measurements both using the leading p_T^{lep} distribution.

Results are in agreement with SM predictions and are consistent with the LEP precision measurements and comparable with Tevatron results.

