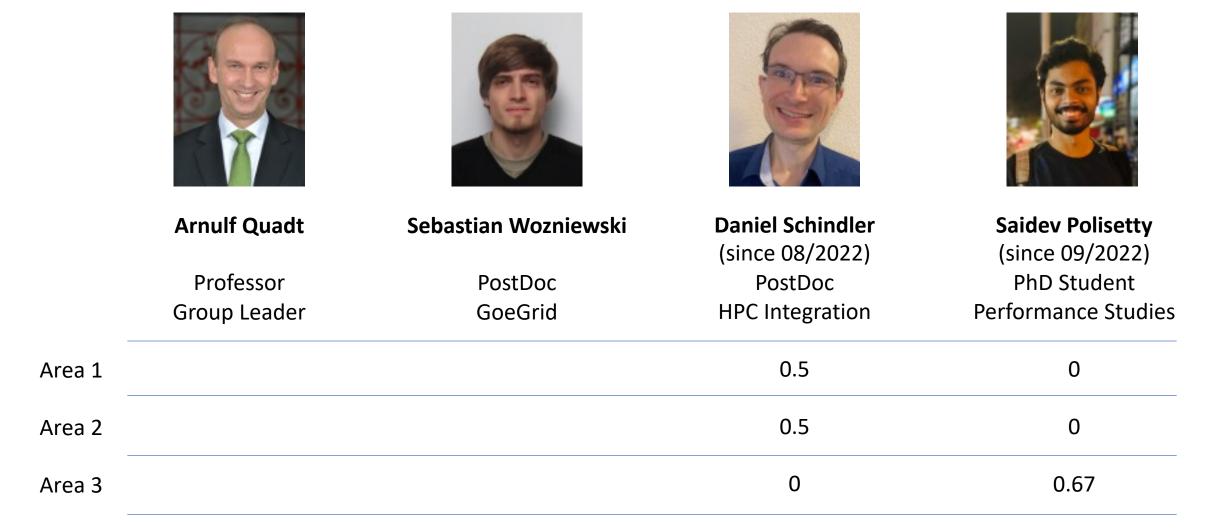

HPC Integration into WLCG Tier-2 GoeGrid

FIDIUM Collboration Meeting 2022 Status of Work Package 1

Arnulf Quadt, Sebastian Wozniewski, Saidev Polisetty, Daniel Schindler

HEP Computations in Göttingen


In future (LHC Run4) high computing resources for HEP computations are needed

Extension of GoeGrid with the local HPC system "Emmy"

- Opportunistic resource: usage on limited time frame for free
- In future: Non-opportunistic usage planned

Possible long-term perspective: A single merged cluster

FIDIUM Team @ Uni Göttingen Distribution of work loads (FTE)

Typical Requirements of ATLAS (HTC)

- 300.000 cores and 300 PB storage needed per year (2022)
- Requirements of single-core jobs and single-node multi-core jobs
 - **8 64 cores**
 - ~ 2 GB memory per core
 - ~ 4 GB local scratch space per core
 - ~ 1 Mbit/s per core network usage (remote storage access)
 - 12 hours walltime with large variance (due to pilot model)
- The load subdivides into different physical calculations
 - Simulation of physical processes (50% CPU)
 - Reprocessing of experiment data (30% CPU)
 - Analysis (15% CPU)
 - Statistical modelling and ML (5% CPU)

Conceptional Challenges

- Scheduling policy:
 - HPC Batch System only allows Whole-Node-Scheduling.
 - Targeted to run different job types (single-core or multi-core)
 - Need a solution to dynamically schedule jobs on booked nodes.
- Opportunistic and Non-Opportunistic usage of Emmy is targeted.
 - Opportunistic usage of Emmy would limit the consumable time for jobs to max. 2h. Usually jobs by ATLAS run with t>2 h.
 - Short lifetime of booked nodes limits flexibility and efficiency

Setup of GoeGrid and Emmy GÖTTINGEN IN PUBLICA COMM First goal and test solution **ATLAS PanDa GoeGrid Compute Nodes GoeGrid ARC CE 1,2 HT-Condor** Queues Job Conversion GoeGrid (a) Scheduler **GoeGrid dCache Storage** PanDa to HT-Condor Goegrid-HPC (b) Batch System GoeGrid • NHR HPC System ,Emmy' GoeGrid-HPC Slurm Batch System $\langle \rangle$ **COBalD/TARDIS** Virtually extend GoeGrid batch system with Daemon containers turning HPC nodes into virtual nodes Look for used and with own job scheduling. **needed** ressources • Launch Slurm jobs Usage of COBalD/TARDIS COBalD: Look what resources are used • Containerization Slurm 432 Slots HTCondor 432 Worker Nodes

Each slot: 80 Threads

with Singularity

GEORG-AUGUST-UNIVERSITÄT

with partitionable slots

 TARDIS: Interface to the resource and the overlay batch system

Current Issues

Network

- **Outbound connections** from nodes not possible by default using proxies problematic due to high traffic allow connections to known IPs as a compromise?
- GoeGrid Network has to be connected to the net of Emmy to allow for high-bandwidth connections from HPC to the local grid storage.
- Allow for remaining outbound connections to outside grid services e.g. **cvmfs** or via GoeGrid squid proxies

Software permissions

- No unprivileged user namespaces Prevents multiple layers of containers as needed for using COBalD/TARDIS with ATLAS
 jobs
- Possible solutions:
 - User-specific temporary permission based on setuid-script (under discussion)
 - Additionally leave out network namespaces which is not needed but main reason for security concerns?

Walltime preferences

- Drone lifetime should cover multiple jobs in sequence for efficient usage
- HPC limits long-term jobs (most resources allow only 12h); ~2h for opportunistic usage

Summary and Outlook

- 1. The LHC Run4 has higher computational demands which cannot be met by current resources.
- 2. Our approach: COBalD/TARDIS will be used for the integration of the NHR HPC system "Emmy" to GoeGrid.
- 3. The usage of a virtual node has been tested on a GoeGrid server.
- 4. Fast network connection of GoeGrid storage elements to the Emmy cluster is currently being setup.
- 5. Work for Area 1 is ongoing, first steps have been successfully achieved.