Developments at CERN & WLCG in the context of Data Lakes and Caches

Mario Lassnig with content from many colleagues

HEP Software Foundation Community Whitepaper

Bottom-up exercise Identify the areas of work to address the HEP challenges of the 2020s

WLCG strategy toward HL-LHC Whitepaper

Top-downHigh-level prioritization of the whitepaper, for the LHC needs

The LHCC review series of HL-LHC computing

Multistep process	Tracking the progress towards HL-LHC
May 2020	Review of ATLAS and CMS plans, Data Management (DOMA)
	Offline software, WLCG collaboration and infrastructure
November 2021	Update from ATLAS and CMS
	Common Software Activities (Generators, Simulation, Foundation, Analysis, DOMA)

HL-LHC Computing Roadmap 2/2

2029

FMAMJJASON

Gap between available and needed resources

Revised HL-LHC schedule

Key DOMA topics identified

Token-based authentication & authorisation Software-Defined Networks Revisiting experiment dataflows

Leverage R&D projects to fill resource gaps

ESCAPE / EOSC DataLake-as-a-Service

Experiment-based R&Ds: Data Carousel, Virtual Placement, ...

Collaborations with commercial clouds

Cross-experiment collaborations on infrastructure & computing, esp. with astronomy, neutrino, and photons

2021

2022

FMAMJJJASONDJFMAMJJJASONDJFMAMJJJASONDJ

2023

2024

FMAM11ASOND

2025

1 FMAM 1 1 A SOND

2026

FMAM11ASOND

2027

FMAMJJASOND

2028

MAM11ASOND

2022-10-10

Data Challenge planning

Collection of DC#21 feedback available: <u>https://indico.cern.ch/event/1026399/</u>

Start planning next one (DC#24)

Considering a 3x increase of required throughput Considering recent updates to HL-LHC timeline

Networking will play a central role in HL-LHC as enabler for HEP computing

Support the core functions of WLCG (data acquisition/archival/processing) Provide more flexibility to the computing models, allowing to optimise 4.8 Tbps of total network capacity needed for HL-LHC

Full stack packet marking

Work being organized by the <u>RNTWG Packet Marking</u> subgroup Passing more elaborate metadata from Rucio to FTS to the network layer to improve our monitoring and understanding of flows

Network orchestration

Sequence of limited-scope tests for network function virtualisation The <u>Network Orchestration WG</u> is planning to describe options and a possible model that will require iteration Rucio/FTS will need to participate in this longer-term activity

Software-Defined Networks: NOTED

Self-aware network load-balancing

Automatically discovers large transfers Integrated with Rucio & FTS

Offload from LHCOPN to LHCONE

Achieves additional bandwidth Can exploit unused links

Demonstration driven by ATLAS Rucio

CERN, TRIUMF, KIT Preparing for SC'22

See next week's network meeting Full presentation

Software-Defined Networks: SENSE

Allow priority traffic for priority datasets

Ongoing work, driven by CMS Rucio

Make Rucio capable of using SENSE

To schedule transfers on the network Automatically configure VPNs Enforce a given path for set of transfers Implement QoS to prioritize at the DTN level

Fine-grain managed transfers allows

Fine-grain monitoring Within a well identified network channel

Caching examples: Virtual Placement, SoCal Cache

VP: Cache-aware brokering of ATLAS jobs

Strategically deployed 6 small XCaches (12TB)

Implemented via Rucio geo-awareness

SoCal: Federated XCache at the CMS infrastructure-level cache with 2.6 PB capacity

Very encouraging results

Cache hit rate ~80% delivery of data from cache instead origin

Reduce the traffic by factor 2+ during normal uses

ESCAPE Data-Lake-as-a-Service 1/2

Prototype an infrastructure adapted to exabyte-scale future needs of large science projects

Ensure sciences drive the development of EOSC Address FAIR data management principles

Data Lake as modular ecosystem of services and tools

Shaped around the ESCAPE scientific communities Federated data management and access solution Heterogeneous resources

Hiding complexity and providing transparent access to data

Layer for orchestration of resources as entry point for sciences Content delivery and caching layer

ESCAPE Data-Lake-as-a-Service 2/2

ATLAS DM@LHC - Dilepton Resonance

2a. Output generation

WLCG Data Challenges

Major WLCG objectives: 2 scenarios

Export of RAW data from CERN to the T1s Data reprocessing

Two-yearly "steps" until HL-LHC Improve through R&D programmes

2020 estimation total

- 4.8 Tbps of total network capacity
- ATLAS & CMS400 Gbps flatALICE & LHCb100 Gbps flat
- ALICE & LHCb 100 Gbps hat
- x2 to absorb expected bursts
- x2 overprovisioning for operations

F1	%ATLAS	%CMS	% Alice	% LHCb	ATLAS+CMS Network Needs (Gbps) Minimal Scenario in 2027	Alice Network Needs (Gbps) Minimal Scenario in 2027	LHCb Network Needs (Gbps) Minimal Scenario in 2027	LHC Network Needs (Gbps) Minimal Scenario in 2027	LHC Network Needs (Gbps) Flexible Scenario in 2027	
A-TRIUMF	10	0	0	0	200	0	0	200	400	
DE-KIT	12	10	21	17	450	80	70	600	1200	
S-PIC	4	5	0	4	180	0	20	200	400	
R-CCIN2P3	13	10	14	15	450	60	60	570	1140	
T-INFN-CNAF	9	15	26	24	480	110	100	690	1380	
R-KISTI-GSDC	0	0	12	0	0	50	0	50	100	
NDGF	6	0	8	0	110	30	0	140	280	
VL-T1	7	0	3	8	140	10	30	180	360	
NRC-KI-T1	3	0	13	5	50	50	20	120	240	
JK-T1-RAL	15	10	3	27	490	10	110	610	1220	
RU-JINR-T1	0	10	0	0	200	0	0	200	400	
JS-T1-BNL	23	0	0	0	450	0	0	450	900	
JS-FNAL-CMS	0	40	0	0	800	0	0	800	1600	
atlantic link)					1250	0	0	1250	2500	
Sum	100	100	100	100	4000	400	410	4810	9620	

Т1	LHC Network Needs (Gbps) Minimal Scenario in 2027	LHC Network Needs (Gbps) Flexible Scenario in 2027	Data Challenge target 2027 (Gbps)	Data Challenge target 2025 (Gbps)	Data Challenge target 2023 (Gbps)	Data Challenge target 2021 (Gbps)
CA-TRIUMF	200	400	100	60	30	10
DE-KIT	600	1200	300	180	90	30
ES-PIC	200	400	100	60	30	10
FR-CCIN2P3	570	1140	290	170	90	30
IT-INFN-CNAF	690	1380	350	210	100	30
KR-KISTI-GSDC	50	100	30	20	10	0
NDGF	140	280	70	40	20	10
NL-T1	180	360	90	50	30	10
NRC-KI-T1	120	240	60	40	20	10
UK-T1-RAL	610	1220	310	180	90	30
RU-JINR-T1	200	400	100	60	30	10
US-T1-BNL	450	900	230	140	70	20
US-FNAL-CMS	800	1600	400	240	120	40
(atlantic link)	1250	2500	630	380	190	60
Sum	4810	9620	2430	1450	730	240

ESCAPE Data-Lake-as-a-Service

