Lagrangian sets in turbulent flows

Christiane Schneide SFT Meeting, 25.08.2022

Lagrangian coherence

Given N particle trajectories at discrete times $\Gamma = \{0, 1, ..., T\}$

$$x_{i}(t)$$
 with $I = 1, ..., N$ and $t = 0, ..., T$

Coherent set: subset of particles which remain close to each other over defined time span

Spatio-temporal clustering on particle trajectories

Weighted network ansatz:

instantaneous adjacency matrix $A_t = 1, d_{ij}(t) \le \varepsilon \mid 0, else$

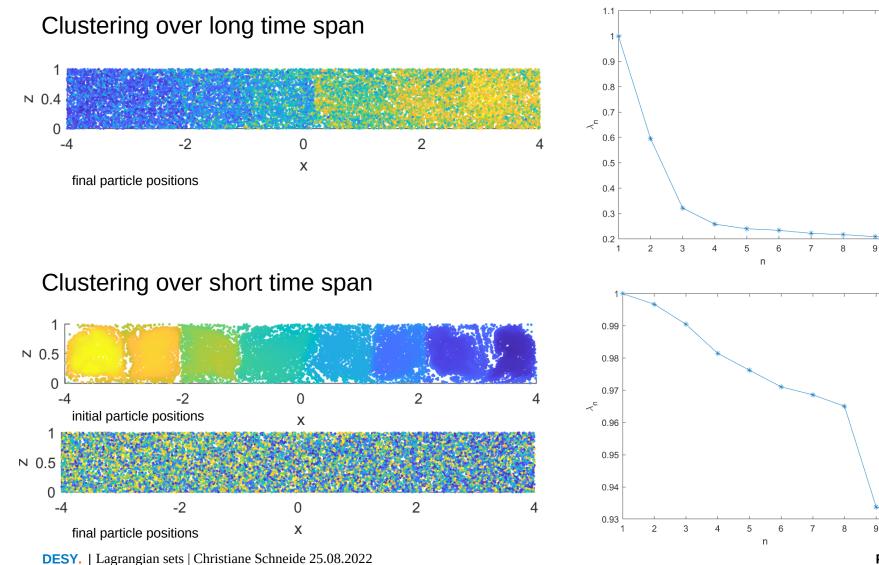
network weight matrix $W = \sum_{t \text{ in } \Gamma} A_t$

Clustering on the eigenvectors associated with the largest eigenvalues of

 $L=D^{-1/2}WD^{-1/2}$ where D is the diagonal degree matrix with $d_{ii} = \sum_{j} W_{ij}$.

¹ Shi, Malik 2000

Static clustering



10

10

Dynamic Community Discovery²

DCD		
instant optimal	temporal trade-off	cross-time
dependent on current state	dependent on current and previous states	dependent on all current and future states

amount of dynamic information

² Rossetti, Cazabet 2018

Evolutionary clustering 1

Aim: smooth variation of the network weight matrix

- 1) Consider shorter time periods τ centered at t, i.e. $\Gamma(t,\tau) = \{t-\tau/2, ..., t+\tau/2\}$
- 2) Evolutionary network approach: time-dependent weight matrix

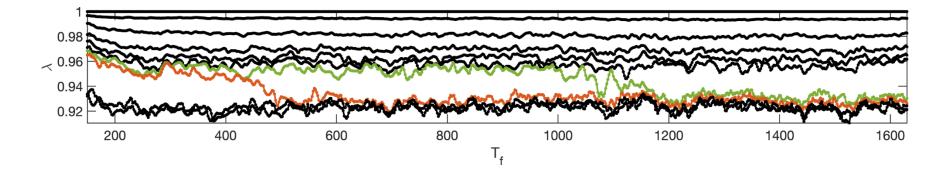
$$N_{t} = \Sigma_{s \text{ in } \Gamma(t, \tau)} A_{s}$$

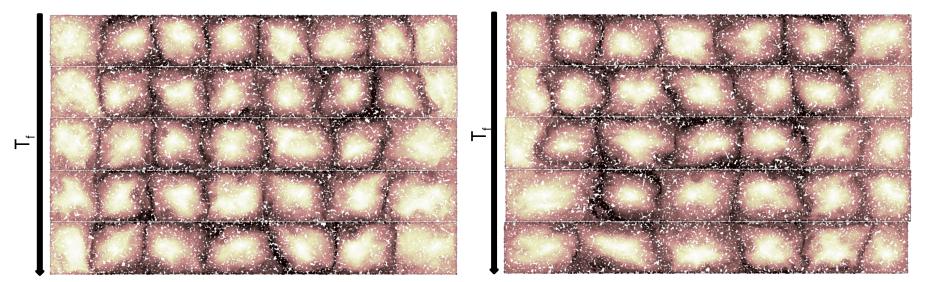
- 3) Evolutionary clustering on the eigenvectors associated with the largest eigenvalues of $L_t = D_t^{-1/2} W_t D_t^{-1/2}$.³
- Extract particles with large cluster membership likelihood using the Sparse EigenBasis Approximation⁴.

³Chi et al. 2007

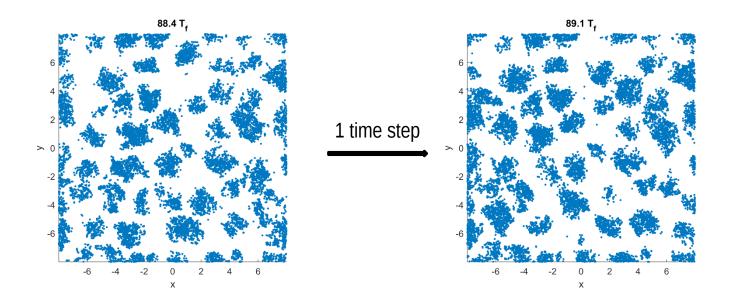
⁴Froyland et al. 2019

Evolutionary clustering





- Large number of particles (> 60000)
- Physical estimate on number of sets: ~ 80
- Clustering algorithms may not be stable



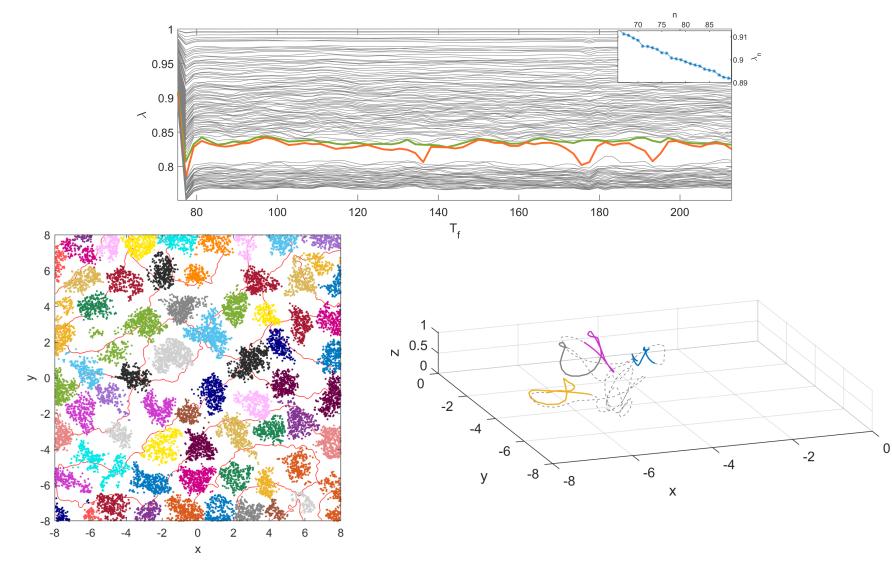
Evolutionary clustering 2

Aim: smooth variation of the clustering

- 1) Create a matrix that incorporates the current clustering with factor α and the previous clustering with factor $(1-\alpha)^3$.
- 2) Solve the eigenvalue problem of the above matrix.
- 3) Create a sparse approximation of the eigenspace using SEBA.
- 4) Extract particles with large cluster membership likelihood.

³Chi et al. 2007

Evolutionary clustering



DESY. | Lagrangian sets | Christiane Schneide 25.08.2022

