Summer student project: Cerenkov detector geometry

Optimizing the number and layout of the Cerenkov straws with respect to detection efficiency, energy acceptance and energy resolution

Luca Hartman Hamburg, 30.08.2022

HELMHOLTZ

The project

Finding the optimal layout of the Cherenkov straws

The layout parameters

- Multiple layers, each slightly offset to the right
 - Number of layers
 - X frequency: distance between two straws (same layer)
 - Z frequency: distance between two straws (different layers)
 - Layer offset: offset between two layers
 - Straw radius
- The different configurations are simulated using a reduced version of the full Geant4 luxe simulation

The project

Finding the optimal layout of the Cherenkov straws

How is optimal defined ?

- Ultimately: the best energy distribution reconstruction
 - Especially in the edge zone: 8 GeV \rightarrow 14 GeV
- High detector efficiency
 - Efficiency = # straw hits / # true electrons
 - Not weighted
- Flat acceptance
 - Acceptance = # electrons hitting straws / # true electrons hitting straws
 - The straw hits are weighted depending on the path length inside the straw
- Good energy resolution ($\sigma_E/E < 2\%$)

Reconstruction

From straw hit distribution and path lengths to energy distribution

Methodology

- Only Geant4 tracks have been used for this study
- *True* energy spectrum = energy spectrum at the virtual plane
- Associating straw hits to front plane hits
- Transfer matrix used to reconstruct the energy distribution
- For each energy (at the front plane) and each straw, the relative path lengths inside of the straw of all the electrons are added together
 - The relative path length is a proxy to the number of Cerenkov photons expected in each straw
- This transfer matrix distributes the straw hits on different energies → Energy spectrum from the straw hit spectrum (using the Compton scattering signal spectrum)

Reconstruction method

Weighted sum of for each straw and transfer matrix

Reconstruction

From straw hit distribution and path lengths to energy distribution

600k events, $\xi = 0.5$

Resolution

Estimating energy resolution dependance on the detector geometry

Energy resolution

- Mono energetic electron samples are through the magnet and onto the Cerenkov detector
 - 10k events, every GeV from 3 GeV to 16 GeV
- The transfer matrix is applied to the straw hits \rightarrow reconstructed energy spectrum
- A Crystal Ball function is fitted to extract σ_E/E

Default layout

Default configuration

16 mm X frequency, 16 mm Z frequency, 4 mm layer offset, 4 layers, 240 straws, 4.02 mm diameter

Default layer: energy resolution

High energy peaks broader than low energy peaks

E [GeV]

counts

Default layer: finale measurements

16 mm X frequency, 16 mm Z frequency, 4 mm layer offset, 4 layers, 240 straws, 4.02 mm diameter

Dense single layer layout

Dense single layer layout

4.0924 mm X frequency, 16 mm Z frequency, 4 mm layer offset, <mark>1</mark> layer, 100 straw, 4.02 mm diameter

Dense single layer layout: efficiency

Dense single layer layout: energy resolution

The broadness of the peaks is quite similar to that obtained using 4 layers, but the tails are much smoother, because there is less drops in detection

Dense single layer layout: final measurements

An increasing relative resolution

4.0924 mm X frequency, 16 mm Z frequency, 4 mm layer offset, <mark>1</mark> layer, 100 straws, 4.02 mm diameter

Wiggly reconstruction

Dense double layer layout

Dense double layer layout

4.0924 mm X frequency, 16 mm Z frequency, 4 mm layer offset, <mark>2</mark> layer, 100 straws, 4.02 mm diameter

Dense double layer layout: efficiency

Dense double layer layout: energy resolution

Dense double layer layout: final measurements

4.0924 mm X frequency, 16 mm Z frequency, 4 mm layer offset, <mark>2</mark> layer, 100 straws, 4.02 mm diameter

4 dense layers layout

4 dense layers layout

4.0924 mm X frequency, 16 mm Z frequency, 4 mm layer offset, <mark>4</mark> layer, 200 straws, 4.02 mm diameter

4 dense layers layout: efficiency

4 dense layers layout: energy resolution

E [GeV]

4 dense layers layout: final measurements

4.0924 mm X frequency, 16 mm Z frequency, 4 mm layer offset, <mark>4</mark> layers, 4.02 mm diameter

Double layer layout, 6 mm straws

Double layer layout, 6 mm straws

6.1 mm X frequency, 16 mm Z frequency, 4 mm layer offset, 2 layer, 200 straws, 6 mm diameter

Double layer layout, 6 mm straws: efficiency

Larger straws layout: energy resolution

Broader peaks compared to 4 mm diameter straws

E [GeV]

counts

Double layer layout 6 mm straws : final measurements

6.1 mm X frequency, 16 mm Z frequency, 4 mm layer offset, 2 layers, 6 mm diameter

Summary

Comparing all the layouts

6 mm straws are worse than 4 mm straws Energy resolution is not dependent on the number of layers

Conclusion

- The reconstruction method has been tried and tested
- The first layouts have been explored and some preliminary results obtained
- One layer is sufficient to detect a large majority of the electrons
 - Two layers would provide security in case of a malfunctioning straw
- Energy resolution is independent of the layout, but is strongly linked to the straw radius
 - Possibility to use larger straws for lower energy electrons, while keeping resolution in the high energy region
 - More comprehensive study of the systematic errors is expected to highlight some layout dependance
- Varied straw diameters and an added straw for high energy electrons should be studied
- Impact of systematic errors should be studied further
 - e.g., small straw position displacement or one malfunctioning straw