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« The Zwicky Transient Facility (ZTF) is a
wide-field, optical telescope in Palomar,

searching for transients such as supernovae.

« The Bright Transient Survey (BTS) is a
survey carried out by ZTF, which aims to

spectroscopically classify supernovae
brighter than ~19 mag.

05.06.2023

Introduction to ZTF

Alice Townsend | HU Berlin




What do we want to do?

Filippenko (2017)

There are ~ 3000 Type la supernovae

(SNe la) recorded in BTS.

However, in the ZTF archive, there are
likely thousands more! They just don't
have a spectrum (because they are

fainter than BTS follow up criteria).
How else can we know?

... light curves!
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What do we want to do?

* Photometric classification: identifying the type of supernova based on the light curve,

using machine learning.

« Training sample: labelled (i.e. with a spectrum and classification) BTS light curves.
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What do we want to do?

* Photometric classification: identifying the type of supernova based on the light curve,

using machine learning.

« Training sample: labelled (i.e. with a spectrum and classification) BTS light curves.

BUT, our final test set (unclassified objects in ZTF archive) will be higher z, fainter and

noisier than the training sample.

« Solution: augment the training sample to be at higher z, and add noise (noisification).
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Why do we want to do it?

Betoule, M., et al. (2014)
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How are we going to do it?

 Train a deep learning model using BTS light curves augmented with added

noise.
ParSNIP — Parametrization of SuperNova Intrinsic Properties

(K. Boone, 2021)

« Test classification predictions with follow-up (for SNe with z ~ 0.1) and

incorporate this into a statistical cosmological framework.
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The ParSNIP model
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The ParSNIP model

« A modified version of a variational autoencoder (VAE)
* Intrinsic variables (functional form is not known) — modelled with NN.
 Extrinsic variables (4, c, ty) — modelled with known functional form.

. Uses a NN to predict the intrinsic spectra
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. Intrinsic spectra are passed through a
physics layer that models how the light
propagates. i
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Classification

« Currently: using a Gradient
Boosting Decision Tree to classify
based on the intrinsic (sq, S5, S3)
and extrinsic (t,, A, c) latent

variables.

* Future plans: combine other
information such as host galaxy
info, light curve fit outputs and rates

of SN types.
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Training data

1. Get forced photometry light curves from classified objects in BTS

(Simeon’s FPBot).
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Training data

1. Get forced photometry light curves from classified objects in BTS
(Simeon’s FPBot).

2. Create higher redshift copies of the forced photometry light curves.
« New z are selected randomly from a z3 distribution (with a maximum of Zorig + 0.1)
 Light curve magnitudes are scaled to observed values at new z
» Errors are scaled and noise is added
» K-correction (where possible)
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Training data

1. Get forced photometry light curves from classified objects in BTS

(Simeon’s FPBot).

2. Create higher redshift copies of the forced photometry light curves.
3. Apply a signal to noise cut.

« At least 5 data points (including the peak) with S/N > 5.
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Training data

1. Get forced photometry light curves from classified objects in BTS
(Simeon’s FPBot).

2. Create higher redshift copies of the forced photometry light curves.
3. Apply a signal to noise cut.

4. Remove data points according to the ‘density’ of detections.

» Asliding window of 5 days calculates the density of detections (per band).
» Probabilistically remove points with high density, according to some threshold.

Bl = Optional
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Training data

1. Get forced photometry light curves from classified objects in BTS
(Simeon’s FPBot).

Create higher redshift copies of the forced photometry light curves.
Apply a signal to noise cut.
Remove data points according to the ‘density’ of detections.

Remove data points randomly.
* Number of data points removed is according to some fraction: ‘subsampling rate’.

o kN

Bl = Optional
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Training data

ZTF18abcptmt : SN II
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Initial results

Trained on:

Number per class: ~13000 (SNla scaled by 5)

Random subsampling rate: 90%

Tested on:

BTS + augmented transients (balanced,

~13000 per class)
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SNla classifier tested on BTS + augmented transients

For cosmology, the classification uncertainty must be

incorporated into the cosmological fitting procedure.
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Live testing

We have started live testing!

... but only on one test object so far (giving us a 100% -
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Summary
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* Promising classification results so far, but there 0.8
are lots of parameters we can still tweak! > |

- Live testing is just starting... g oe
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