
RUB

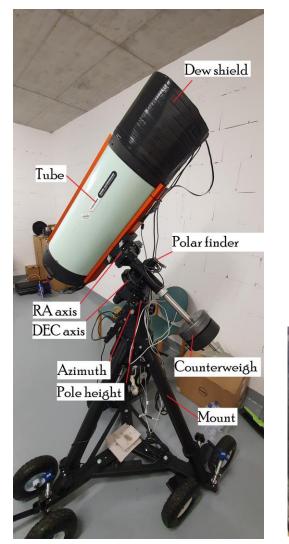
RUHR-UNIVERSITÄT BOCHUM LAST, POLARIZATION & ISRAEL: DEVELOPMENT OF A NEW POLARIZATION TELESCOPE

RUHR-UNIVERSITÄT BOCHUM

The Large Array Survey Telescope (LAST)

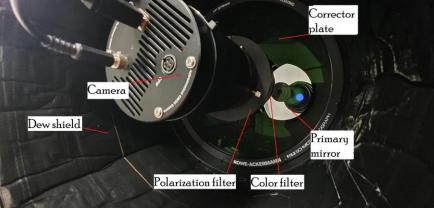
- Array of up to 48 telescopes, under construction
- 4 telescopes per mount, 8 mounts already installed
- Based in Neot Semadar, Israel
- High cadence all sky survey
- Up to 355 square degree FoV
- Modular design single mounts can be adapted (filters, polarization, observation mode)
 - Science objectives: GW follow-up, early Sne detection, fast transients, follow-up for ULTRASAT, neutrino follow-up, binaries, WDs, exoplanets, etc...

Why doing optical polarization with LAST?

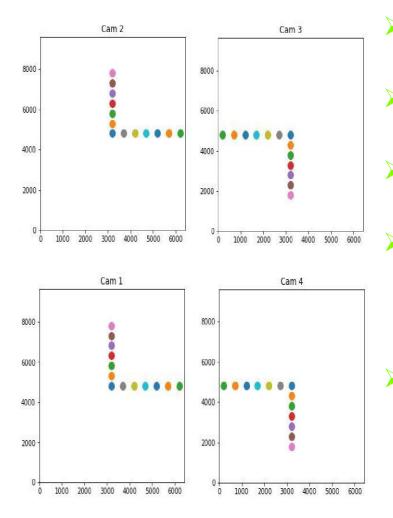

Mag to flux:
$$I = 10^{-0.4(m-m_{zp})}$$

Stokes Q: $\frac{I_0 - I_{90}}{I_0 + I_{90}}$
Stokes U: $\frac{I_{45} - I_{135}}{I_{45} + I_{135}}$
Pol. degree: $\sqrt{Q^2 + U^2}$
Pol. angle: $\arctan \frac{U}{Q}$

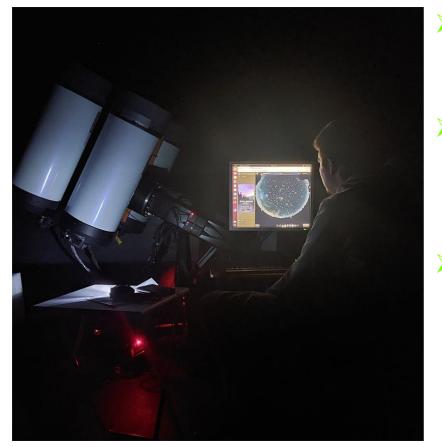
- For polarization information, we need 4 measurements with linear polarization filter at 0, 45, 90 and 135 degree
 - Combine these 4 photometric information via Stokes formalism to get polarization information
 - "Other" polarization telescopes have (fast) rotating filter, so limitation to central part of FoV, bright sources


Benefit of LAST: No moving parts in lightpath, take all data at same time! We can perform polarization measurments over whole field of view!

Bochum prototype & why polarization is hard to measure



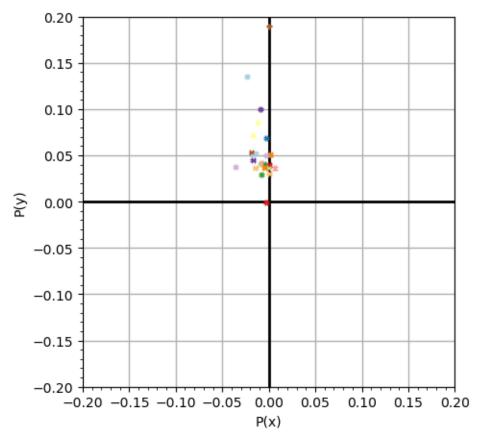
- Polarization is hard to measure because of instrumental polarization
- All optical components in a telescope polarize light partially, plus reflections, stray light, CCD sensitivity, etc..
- We need good understanding of our telesope + optical components to correct for instrumental polarization
 - Bochum prototype to test setup and filters


Standard stars & instrumental polarization corrections

- Instrumental polarization is changing over FoV
- Observe sources on different grid positions
- 4 tubes are not perfectly aligned, so simultaneous observations not possible
- To measure instrumental polarization we observe standard sources: Low-pol and high-pol stars, with **known** and **constant** polarization
- There are systematics like atmosphere, moon light, temperature, focus, etc.., therefore many measurements needed to beat system by statistics

Observation runs in Israel

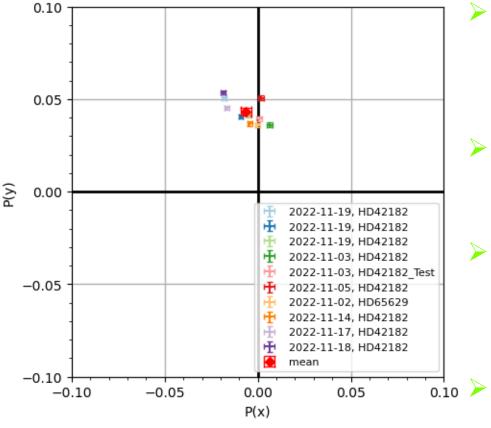
- Equiped one mount with polarization and R color filters, FoV about 2.2 square degree
- 3 observation runs done: May 2022 (Anatolii, Jowita, Ruslan, Sven), November 2022 (Simone) and March 2023 (Sven)



Data analysis & quality cuts

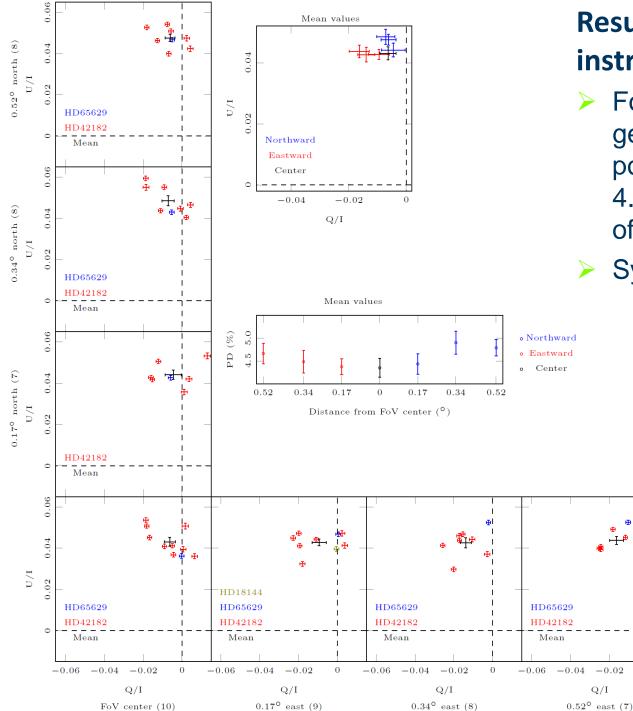
	date	time	exptime	name	aperture_set	letters	sky	fwhm	ellipticity	value2	value3	mag	mag_error	status
0	2022- 11-19	17:19:21.276	5.0	HD19820_r0- 0002-p000.fit	OBJECT_O_BAD	BL	4.2	2.85	0.025	16.7	11.0	11.3584	0.0018	ок
1	2022- 11-19	18:34:19.325	5.0	HD19820_r0- 0003-p000.fit	OBJECT_O_BAD	BL	4.0	2.85	0.074	58.3	11.0	11.3011	0.0018	ОК
2	2022- 11-19	16:20:09.867	5.0	HD19820_r1- 0001-p000.fit	OBJECT_O_BAD	BL	3.9	2.77	0.037	119.7	11.0	11.3827	0.0018	ок
3	2022- 11-19	17:22:44.215	5.0	HD19820_r1- 0002-p000.fit	OBJECT_O_BAD	BL	3.7	2.91	0.011	3.2	11.0	11.3638	0.0018	ок
4	2022- 11-19	18:37:47.741	5.0	HD19820_r1- 0003-p000.fit	OBJECT_O_BAD	BL	3.5	3.52	0.119	74.3	11.0	11.2953	0.0018	ок
				9464							***			
2218	2022- 11-01	01:38:31.589	60.0	NGC1275_r0- 0002-p090.fit	OBJECT_O_BAD	BL	59.1	6.57	0.051	164.9	11.0	14.4949	0.0127	ОК
2219	2022- 11-01	00:37:09.595	60.0	PKS0735+17_r0- 0001-p090.fit	OBJECT_O_BAD	BL	44.8	2.61	0.006	114.4	<mark>11.0</mark>	16.2914	0.0514	OK
2220	2022- 11-01	01:03:47.093	5.0	NGC1275_r0- 0001-p135.fit	OBJECT_O_BAD	BL	5.5	3.36	0.100	0.0	11.0	17.2007	0.0861	NEGATIVE_PIXELS
2221	2022- 11-01	01:40:54.752	60.0	NGC1275_r0- 0002-p135.fit	OBJECT_O_BAD	BL	67.1	5.42	0.056	99.9	11.0	14.3358	0.0127	OK
2222	2022- 11-01	00:39:16.657	60.0	PKS0735+17_r0- 0001-p135.fit	OBJECT_O_BAD	BL	51.9	1.73	0.010	34.2	11.0	16.0381	0.0500	ок

Data analysis & quality cuts



Low pol data points at central CCD position of HD42182 without filtering from Simones observation run.

- The sampled datapoints show a large spread in the Stokes Q-U-plane
- All datapoints of an unpolarized stars should cluster at a fixed position in this phase space, which then gives the instrumental polarization
- We had to develop quality cuts and basically go through all of our data by hand
- We filter for hot pixels inside aperture, sky, FWHM, saturation + sorted out suspicious data points by hand


Data analysis & quality cuts

Data points that survived that quality cut

- Data points that survived quality cut cluster for a given star and position at a certain point in phase-space
- This is the true instrumental polarization at this CCD/FoV position
- Then correct all good data at this position with the average Q and U values and calculate the polarization degree and angle
 - Currently we are implementing an absolute photometry to get absolute polarization values

Results: Low pol stars and instrumental polarization

For non-polarized stars we get a instrumental polarization of about 4.3±0.2% in center, on edge of usable FoV about 4.8%

System is working great ! ③

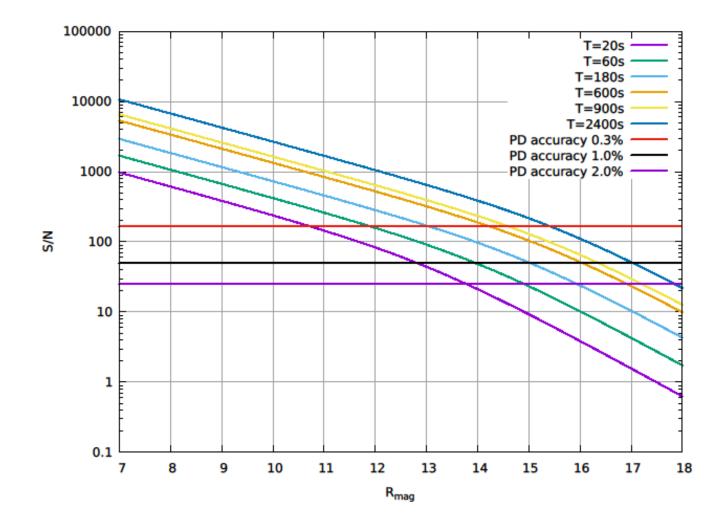
RUHR

BOCHUM

Astronomisches Institut RUHR-UNIVERSITÄT BOCHUM UNIVERSITÄT

0

RUB


Results: High polarization star HD204827

- We observed high polarization standard star HD204827 using 5s exposure (SNR>385)
- After subtracting instrumental polarization we are in agreement with other polarization measurments by high-precision instruments

Instrument	Center	of FoV	0.54° of center				
	Pol. degree	Pol. angle	Pol. degree	Pol. angle			
LAST	5.32±0.19%	59.6±1.58°	5.09±0.19%	60.1±1.64°			
NOT (DIPol-UF)	5.085±0.003%	59.21±0.02°	We have no datapoints here				
NOT (ALFOSC)	4.893±0.029%	59.10±0.17°	Only LAST can do it's magic here				
RoboPol	5.29±0.06%	61.1±0.3°					

System limits – simulations based on observational data

What to do next?

- We are constructing new test telescope with 4 cameras and self-designed adapters for larger full FoV filters in Bochum right now
- Take science data for a nice publication!

