⁵⁶Ni– t_0 distribution of calcium-rich supernovae

Amir Sharon

Advisor: Doron Kushnir

Weizmann Institute of Science

MMS annual meeting

Supernovae – general picture

Supernovae are the terminal explosion of stars

	Type la	Core collapse
Progenitor	White dwarf	Massive star
Power source	Thermonuclear	Gravitational collapse
Location	All types of galaxies	Star forming galaxies

Ca-rich supernovae are poorly understood

Ca-rich Supernovae (SNe) are a new and a mysterious transient

- Faint and fast
- Strong lines of Ca in nebular spectra
- Many explode in the far outskirts of their host galaxies
- Unclear if WD or CC origin modelling needed!

Perets+ 2010

Modeling supernovae is hard

- Simulating the explosion is hard hydrodynamics, nuclear reactions, asymmetry, neutrinos...
- Radiation transfer simulations are hard opacity constitutes from thousands of atomic transitions

Can we bypass radiation transfer calculations?

SNe light curves are powered by ⁵⁶Ni **decay**

 $^{6 days 77 days} ⁵⁶Ni \rightarrow \ ^{56}Co \rightarrow \ ^{56}Fe$

 $Q_{\text{Ni56}}(t) = Q_{\gamma}(t) + Q_{\text{pos}}(t)$

Late times expectation: $L(t) = Q_{Ni56}(t)$

 $Q_{dep}(t) = Q_{\gamma}(t)f_{dep}(t) + Q_{pos}(t)$

The late time γ -ray deposition function is determined by the column density

At early times, γ -rays are trapped and $f_{dep} = 1$.

At late times, the deposition fraction is: (homologous expansion $r = v \cdot t$)

$$f_{\rm dep} = \kappa_{\rm eff} \langle \Sigma \rangle_{\rm Ni56} = t_0^2 / t^2 , \ t \gg t_0$$
$$t_0 = \sqrt{\kappa_{\rm eff} t^2 \langle \Sigma \rangle_{\rm Ni56}} \propto M_{ej} / \sqrt{E_{kin}} ,$$

- $\langle \Sigma \rangle_{\rm Ni56}$ is the average column density ($\propto 1/t^2$).
- κ_{eff} effective γ -ray opacity from Compton scattering (known!)

Easily recovered from models

The method

- Acquire a sample of bolometric light curves of Ca-rich SNe.
- Study the γ -ray deposition history and obtain observables 56 Ni mass, t_0
- Constrain models using γ -ray transfer simulations.

Results: Fitting Ca-rich SNe

Results: Observed $t_0 - M_{Ni56}$ distribution with Carich models

Observed $t_0 - M_{Ni56}$ distribution with other SNe models

Conclusions

- Ca-rich SNe γ -ray escape times are $t_0 \approx 35 60$ days
- Very low mass models (WD He shells, ultra-stripped stars) disagree with observations
- Possible models: Low-mass WDs, SESN
- Connects Type Ia and SE SN?

Spectroscopic continuum agreement

De+ 2020

Energy conservation arguments remove $M_{\rm Ni56}$ and t_0^2 degeneracy for Type Ia SNe.

 t_0 has been measured for Type Ia SNe by fitting Q_{dep} to L (direct method).

A different approach to measure t_0 is based on the Katz integral (Katz et al 2013):

$$\int_0^t Q_{\rm dep} t' dt' = \int_0^t L t' dt' + t' E(t') |_0^t,$$

where E is the thermal energy of the ejecta.

For Type Ia SNe, tE(t) is small for early and late times, so:

$$\frac{Q_{\rm dep}}{\int_0^t Q_{\rm dep} t' dt'} = \frac{L}{\int_0^t Lt' dt'}, \quad \text{at} \quad L(t) = Q_{\rm dep}(t),$$

which does not depend on $M_{\rm Ni56}$.

SE SNe require a more versatile interpolation function and accounting for *ET*

SE SNe have $t_0 \sim 100 \text{ day} - f_{dep} = t_0^2/t^2$ not valid in most measurements.

Interpolating function cannot be parametrized by one equation - another parameter n is introduced and:

$$f_{\rm dep} = \frac{1}{(1 + (t/t_0)^n)^2 \frac{2}{n}}$$

ET is non negligible for SE SNe – can reach \sim few $\times 10^{54}$ erg s, $\sim 10\%$ of the time weighted luminosity.

Deducing 4 ejecta properties from the bolometric light curve

We use the integral method to find $\{t_0, \widetilde{ET}, n\}$ that minimize:

$$\frac{N_{\text{bins}}}{N_{\text{meas}}} \sum_{t_i \in t_{L=Q}} \left[\left(\frac{L(t_i)}{LT(t_i)} - \frac{\widetilde{Q}_{\text{dep}}(t_i)}{\widetilde{QT}(t_i) + \widetilde{ET}} \right) \frac{LT(t_i)}{L_{\text{err}}(t_i)} \right]^2$$

Where:

- Tilde quantities are normalized by $M_{\rm Ni56}$. For example $\widetilde{ET} = ET/M_{\rm Ni56}$.
- $t_{L=Q}$ is the time range where $L = Q_{dep}$ is valid.
- $N_{\rm bins}$ is the number of independent time bins. Size of each bin is ~5 day for SE SNe.

The uncertainty of the parameters is calculated with a MCMC algorithm.

Constructing bolometric light curves

The bolometric light curve construction is made of the following steps:

- Missing data interpolation and extrapolation
- Extinction correction
- SED construction UV and IR treatment
- Luminosity calculation
- Errors statistical and systematic

