Nuclear Transients in ZTF and GW follow up

MMS Meeting June 5, 2023

Simeon Reusch

HST image credit: ESA/NASA

It has been an exciting few years for the study of nuclear transients!

First ZTF TDE

THE ASTROPHYSICAL JOURNAL, 872:198 (11pp), 2019 February 20 © 2019. The American Astronomical Society. All rights reserved.

The First Tidal Disruption Flare in ZTF: From Photometric Selection to **Multi-wavelength Characterization**

Sjoert van Velzen^{1,2}, Suvi Gezari^{1,3}, S. Bradley Cenko^{3,4}, Erin Kara^{1,3,5}, James C. A. Miller-Jones⁶, Tiara Hung¹, Joe Bright⁷, Nathaniel Roth^{1,3}, Nadejda Blagorodnova⁸, Daniela Huppenkothen⁹, Lin Yan¹⁰, Eran Ofek¹¹, Jesper Sollerman¹², Sara Frederick¹, Charlotte Ward¹, Matthew J. Graham⁸, Rob Fender⁷, Mansi M. Kasliwal⁸, Chris Canella⁸, Robert Stein¹³, Matteo Giomi¹⁴, Valery Brinnel¹⁴, Jakob van Santen¹³, Jakob Nordin¹⁴, Eric C. Bellm⁹, Richard Dekany¹⁵, Christoffer Fremling⁸, V. Zach Golkhou^{9,16}, Thomas Kupfer^{8,17,18}, Shrinivas R. Kulkarni⁸, Russ R. Laher¹⁹, Ashish Mahabal^{8,20}, Frank J. Masci²¹, Adam A. Miller^{22,23}, James D. Neill⁸, Reed Riddle¹⁵, Mickael Rigault²⁴¹, Ben Rusholme²¹, Maayane T. Soumagnac²⁵¹, and Yutaro Tachibana (優太朗橘)^{26,27} ¹ Department of Astronomy, University of Maryland, College Park, MD 20742, USA; sjoert@astro.umd.edu ²Center for Cosmology and Particle Physics, New York University, New York, NY 10003, USA ³ Joint Space-Science Institute, University of Maryland, College Park, MD 20742, USA ⁴ Astrophysics Science Division, NASA Goddard Space Flight Center, MC 661, Greenbelt, MD 20771, USA ⁵ X-ray Astrophysics Laboratory, NASA/Goddard Space Flight Center, Greenbelt, MD 20771, USA ⁵ ICRAR—Curtin University, GPO Box U1987, Perth, WA 6845, Australia ⁷ Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK ⁸ Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA ⁹ DIRAC Institute, Department of Astronomy, University of Washington, 3910 15th Avenue NE, Seattle, WA 98195, USA ¹⁰ The Caltech Optical Observatories, California Institute of Technology, Pasadena, CA 91125, USA ¹¹ Benoziyo Center for Astrophysics and the Helen Kimmel Center for Planetary Science, Weizmann Institute of Science, 76100 Rehovot, Israel ² The Oskar Klein Centre & Department of Astronomy, Stockholm University, AlbaNova, SE-106 91 Stockholm, Sweden ¹³ Deutsches Elektronensynchrotron, Platanenallee 6, D-15738, Zeuthen, Germany ¹⁴Institute of Physics, Humboldt-Universität zu Berlin, Newtonstr. 15, D-12489 Berlin, Germany ¹⁵ Caltech Optical Observatories, California Institute of Technology, Pasadena, CA 91125, USA ¹⁶ The eScience Institute, University of Washington, Seattle, WA 98195, USA ¹⁷ Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA ¹⁸ Department of Physics, University of California, Santa Barbara, CA 93106, USA ¹⁹ Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125, USA ²⁰ Center for Data Driven Discovery, California Institute of Technology, Pasadena, CA 91125, USA

van Velzen+ 2019

https://doi.org/10.3847/1538-4357/aafe0c

29 more

van Velzen+ 2019 van Velzen+ 2021

29 more

A jetted TDE

THE ASTROP © 2021. The Ame	HYSICAL JOURNAL, 908:4 (2) tican Astronomical Soci	ipp), 2023 January 1 tronomical Society.
Article A very luminous at the strate of	SignationSigna	LeimaginedIt van VelzenIa VillanuevaIa NaskinIa VillanuevaIa NaskinIa Naskin <t< th=""></t<>
	detection of A12022cm3, 20 Center 101 Cost, USA natures and a specific spec	ctroscopically cla

van Velzen+ 2019 van Velzen+ 2021 Hammerstein+ 2021 Andreoni+ 2022

Possible EM counterparts to BH-BH mergers

https://doi.org/10.3847/1538-4357/aca480

A Light in the Dark: Searching for Electromagnetic Counterparts to Black Hole–Black Hole Mergers in LIGO/Virgo O3 with the Zwicky Transient Facility

Matthew J. Graham¹, Barry McKernan^{2,3,4,5}, K. E. Saavik Ford^{2,3,4,5}, Daniel Stern⁶, S. G. Djorgovski¹, Michael Coughlin⁷, Kevin B. Burdge^{8,9}, Eric C. Bellm¹⁰, George Helou¹¹, Ashish A. Mahabal^{12,13}, Frank J. Masci¹¹, Josiah Purdum¹⁴⁽¹⁾, Philippe Rosnet¹⁵, and Ben Rusholme¹¹⁽¹⁾ ¹ California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA; mjg@caltech.edu ² Department of Science, CUNY Borough of Manhattan Community College, 199 Chambers Street, New York, NY 10007, USA Department of Astrophysics, American Museum of Natural History, Central Park West, New York, NY 10028, USA Physics Program, CUNY Graduate Center, 365 5th Avenue, New York, NY 10016, USA ⁵ Center for Computational Astrophysics, Flatiron Institute, New York, NY 10010, USA ⁶ Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA ⁸ Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA ⁹Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA ¹⁰ DIRAC Institute, Department of Astronomy, University of Washington, 3910 15th Avenue NE, Seattle, WA 98195, USA ¹¹ IPAC, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA ¹² Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA ¹³ Center for Data Driven Discovery, California Institute of Technology, Pasadena, CA 91125, USA ¹⁴ Caltech Optical Observatories, California Institute of Technology, Pasadena, CA 91125, USA ¹⁵ Université Clermont Auvergne, CNRS/IN2P3, LPC, F-63000 Clermont-Ferrand, France Received 2022 September 23; revised 2022 November 15; accepted 2022 November 19; published 2023 January 17

Abstract

detected by gravitational wave (GW) observatories. Embedded within a baryon-rich, high-density environment, mergers within AGNs are the only GW channel where an electromagnetic (EM) counterpart must occur (whether detectable or not). Considering AGNs with unusual flaring activity observed by the Zwicky Transient Facility (ZTF), we describe a search for candidate EM counterparts to binary black hole (BBH) mergers detected by LIGO/

van Velzen+ 2019

van Velzen+ 2021

Hammerstein+ 2021

Andreoni+ 2022

Subrayan+ 2023

Graham+ 2023

Three neutrino-associated TDE candidates

van Velzen+ 2019

van Velzen+ 2021

Hammerstein+ 2021

Andreoni+ 2022

Subrayan+ 2023

Graham+ 2023

Stein+ 2021

Three neutrino-associated TDE candidates

nature astronomy

Check for updates

Curvey

ha

tps://doi.org/10.3847/1538-4357/aca283

ckowiak^{1,2}, chael F. Bietenholz^{10,11}, r Andreoni¹⁴, S. Bradley Cenko (10 7,18, arrar³, Goobar 10 23, Mansi M. Kasliwal¹⁴, <mark>₀</mark>24 aniel A. Perley²⁸, Ben Rusholme 💿 24, , Daniel Stern³², 0 🕞 14

astrophysical objects. om the relativistic jet s revealed no excess

van Velzen+ 2019

van Velzen+ 2021

Hammerstein+ 2021

Andreoni+ 2022

Subrayan+ 2023

Graham+ 2023

Stein+ 2021

Reusch+2022

Three neutrino-associated TDE candidates

Three neutrino-associated TDE candidates All had a very luminous dust echo

Three neutrino-associated **TDE candidates** All had a very luminous dust echo 3.6σ correlation of 63 accretion flares with strong dust echo with high-energy alerts

Three neutrino-associated **TDE candidates** All had a very luminous dust echo 3.6σ correlation of 63 accretion flares with strong dust echo with high-energy alerts

Lots of interesting transients, but rather unstructured

Lots of interesting transients, but rather unstructured

What if we had a systematic sample of optical and IR lightcurves of the ZTF nuclear transients?

 $[2018.5, 2021] \rightarrow 3.5$ years worth of data

(400 million alerts)

 $[2018.5, 2021] \rightarrow 3.5$ years worth of data

(400 million alerts)

number of **detections**

11687 transients in final selection

Filtered by host distance, PS1 stargalaxy score, max. brightness and

(400 million alerts)

number of **detections**

11687 transients in final selection

applied baseline correction

MMS Meeting | Nuclear Transients in ZTF + GW follow up | Simeon Reusch | 5 June 2023

 $[2018.5, 2021] \rightarrow 3.5$ years worth of data

- Filtered by host distance, PS1 stargalaxy score, max. brightness and
- Obtained forced photometry with **fpbot**,

Vast majority has a WISE counterpart

Image credit: NASA

Vast majority has a WISE counterpart

Image credit: NASA

Analyzed with a Bayesian block framework to find flares

Vast majority has a WISE counterpart

Image credit: NASA Analyzed with a Bayesian block framework to find flares

15% have a prominent IR flare 2% flare **after** the optical peak

7284 ZTF transients

7284 ZTF transients

5315 of them classified (brighter than 18.5 mag)

 $\frac{\mathrm{SN \ Ia}}{45.4\%}$

7284 ZTF transients

5315 of them classified (brighter than 18.5 mag)

Problem: Brighter than nuclear selection, high class imbalance

SN Ia 45.4%

Noisification: Physically motivated remedy

Magnitude (AB)

Noisification: Physically motivated remedy

- → redshift
- \rightarrow noisify
- → K-correct

Noisification: Physically

Evaluation with test sample

Not including noisified lightcurves in the test sample

AGN -

 $SN (\neq Ia)$

True Type

SN Ia

Star

TDE

preliminary

Identified some strong TDE candidates previously missed

Classification results

MMS Meeting | Nuclear Transients in ZTF + GW follow up | Simeon Reusch | 5 June 2023

9/20

III) What does this tell us about GW follow up?

Photometric identification is still a challenge!

Photometric identification is still a challenge!

There might be types of events in the sample we missed so far

Photometric identification is still a challenge!

There might be types of events in the sample we missed so far

We know about SNe, stochastic AGN variability, AGN flares, CVs and TDEs. But what else?

Photometric identification is still a challenge!

There might be types of events in the sample we missed so far

We know about SNe, stochastic AGN variability, AGN flares, CVs and TDEs. But what else?

Exclusively looking for KN signatures poses the danger of missing something

Photometric identification is still a challenge!

There might be types of events in the sample we missed so far

We know about SNe, stochastic AGN variability, AGN flares, CVs and TDEs. But what else?

Exclusively looking for KN signatures poses the danger of missing something

BBH counterparts (slowly evolving!)

stellar mass BH tidally disrupting a star

SMBH

stellar mass BH tidally disrupting a star

SMBH

Maybe enhanced rate close to the SMBH due to pre-existing accretion disk

stellar mass BH tidally disrupting a star

EM signature: Similar to TDEs, but SMBH mass above Hills mass for **bright** μ TDEs

Faint μ TDEs: unusual flaring in the AGN light curve

MMS Meeting | Nuclear Transients in ZTF + GW follow up | Simeon Reusch | 5 June 2023

SMBH

Maybe enhanced rate close to the SMBH due to pre-existing accretion disk

11/20

Event type possibly observable as EM transients

SMBH

Event type possibly observable as EM transients

WD

BH

Other μ **TDE** channels

Event type possibly observable as EM transients

MMS Meeting | Nuclear Transients in ZTF + GW follow up | Simeon Reusch | 5 June 2023

Other μ **TDE** channels

Accretion induced collapse

11/20

Event type possibly observable as EM transients

There should be some of these IS contained in the nuclear sample GW signals unlikely to be accessible to LVK luced But one can potentially learn about BH evolution and binary formation in AGN disks

MMS Meeting | Nuclear Transients in ZTF + GW follow up | Simeon Reusch | 5 June 2023

SMBH

Nuclear sample: Created with AMPEL

Nuclear sample: Created with AMPEL

MMS Meeting | Nuclear Transients in ZTF + GW follow up | Simeon Reusch | 5 June 2023

Userspecified pipeline

12/20

Nuclear sample: Created with AMPEL

MMS Meeting | Nuclear Transients in ZTF + GW follow up | Simeon Reusch | 5 June 2023

Userspecified pipeline

Science

There is so much more data to be combined

ΟΒΣΕRVΑΤΟRΥ

MMS Meeting | Nuclear Transients in ZTF + GW follow up | Simeon Reusch | 5 June 2023

Userspecified pipeline

Science

12/20

IV) Current ZTF 04 status

MMS Meeting | Nuclear Transients in ZTF + GW follow up | Simeon Reusch | 5 June 2023

We are here!

3	04	05			
	160-190 Mpc	240-325 Mpc			
Image: set of the set of th	70-100	150-260			
	1-3 ≃10 ≳10	25-128			
C					
2021 2022 2	023 2024 2025 2026	2027 2028 2029			

Expected range: 140 – 170 Mpc

Expected range: 140 – 170 Mpc 40% higher distance than O4, 2.6 the volume

Expected range: 140 – 170 Mpc 40% higher distance than O4, 2.6 the volume Expected event rates: 10 (+52/-10) BNS detections

Expected range: 140 – 170 Mpc 40% higher distance than O4, 2.6 the volume Expected event rates: 10 (+52/-10) BNS detections FAR rate: *low significance*: FAR > 1/month (CBC) or > 1/year (burst)

significant: FAR < 1/month (CBC) or < 1/year (burst)

Expected range: 140 – 170 Mpc 40% higher distance than O4, 2.6 the volume Expected event rates: 10 (+52/-10) BNS detections FAR rate: *low significance*: FAR > 1/month (CBC) or > 1/year

(burst)

significant: FAR < 1/month (CBC) or < 1/year (burst)

Localization: Comparable to O3

14/20

Recap: O3 with ZTF

Or: How to go from 2.1 Million to zero

O4 Trigger Strategy

Parameter	Go-deep	Go-wide	Deliberate		No Go		
Strategy	300 sec Push distance	30 sec Push localization		Action Item):		
Frequency of triggers	1 per month 3 night	2 per month 5 nights		human inte	eraction		
FAR min(FAR) - 'Best'	< 1 per century Any pipeline	< 1 per decade Any pipeline	1 per year - century		> 1 per year All pipelines		
max(p-astro)	> 0.9	> 0.9	0.1-0.9		<0.1		
HasNS	>0.9	>0.9	0.1-0.9		<0.1		

Redundant machinery for ZTF scanning

fritz.science (Fritz database)

MMS Meeting | Nuclear Transients in ZTF + GW follow up | Simeon Reusch | 5 June 2023

nuztf + AMPEL

emgwcave (Kowalski DB)
Redundant machinery for ZTF scanning

fritz.science (Fritz database)

MMS Meeting | Nuclear Transients in ZTF + GW follow up | Simeon Reusch | 5 June 2023

nuztf + AMPEL (AMPEL DB)

emgwcave (Kowalski DB)

Scan **S190930t** comprising **24,000** sq. deg. (3 day window)

Scan **S190930t** comprising **24,000** sq. deg. (3 day window)

Retrieve 180,000 alerts in 7 min Filter them in **5 min**

Scan **S190930t** comprising **24,000** sq. deg. (3 day window)

Retrieve 180,000 alerts in 7 min Filter them in **5 min**

Photometry SQL database (although it is HEALPix indexed in several resolutions) - can output ~500 alerts/ second

MMS Meeting | Nuclear Transients in ZTF + GW follow up | Simeon Reusch | 5 June 2023

PS1

ZTF19acccywb

RA: 92.66445720 Dec: 4.92502550 drb: 1.000

sgscore: 0.988 distpsnr: 4.428 srmag: 20.406

Kilonova score: 15 photo z: 0.066

MMS Meeting | Nuclear Transients in ZTF + GW follow up | Simeon Reusch | 5 June 2023

Crossmatch

MMS Meeting | Nuclear Transients in ZTF + GW follow up | Simeon Reusch | 5 June 2023

PS1

ZTF19acccywb RA: 92.66445720 Dec: 4.92502550 drb: 1.000 _____ sgscore: 0.988 distpsnr: 4.428 srmag: 20.406 Kilonova score: 15 photo z: 0.066

Metrics

See On Fritz

MMS Meeting | Nuclear Transients in ZTF + GW follow up | Simeon Reusch | 5 June 2023

19/20

Redundant machinery for scanning

Weekly shifts Always 5 people (US, Europe, India) Already had a few GW alerts Stay tuned! 👳

ZTF has vastly increased the TDE sample

ZTF has vastly increased the TDE sample Created a flux-limited, unbiased sample of nuclear events

ZTF has vastly increased the TDE sample Created a flux-limited, unbiased sample of nuclear events Classification effort ongoing

ZTF has vastly increased the TDE sample Created a flux-limited, unbiased sample of nuclear events Classification effort ongoing Explore the wealth of transients contained in the sample

ZTF has vastly increased the TDE sample Created a flux-limited, unbiased sample of nuclear events **Classification effort ongoing** Explore the wealth of transients contained in the sample **AMPEL enables all this**

ZTF has vastly increased the TDE sample Created a flux-limited, unbiased sample of nuclear events **Classification effort ongoing** Explore the wealth of transients contained in the sample **AMPEL enables all this O4 underway!**

Bonus

To ponder

Wealth of data should increase the likelihood of serendipitous discovery

- But only if we have the right tools for it!
- Rapid follow up is great! But maybe there is something to be gained from archival studies
- How about automatic coincidence searches for all O4 alerts?

Background studies using the normal survey ("blind")

IR transients: Filtered by IR **Blazar candidates**

TDE candidate

MMS Meeting | Nuclear Transients in ZTF + GW follow up | Simeon Reusch | 5 June 2023

slow rise, simultaneous IR rise

Tywin-like

Feature extraction: TDE Fit

ZTF19aapreis - TDE-fit

Feature extraction: TDE Fit

ZTF19aapreis - TDE-fit

Fit parameters:

risetime decaytime **BB** temp **BB** d_temp t_evo time

Feature extraction: TDE Fit

ZTF19aapreis - TDE-fit

Fit parameters:

risetime decaytime **BB** temp **BB** d_temp t_evo time

Fitted twice (stability) **Problem: T** runaway (no UV)

Feature extraction: SALT Fit (SN Ia)

ZTF19aaafvzy salt2 None chisq 87.77 ndof 90

z = 0.21352750 $t_0 = 2458493.3$ $x_0 = 2.6827823 \times 10^{-4}$ $x_1 = 8.3501711$

MMS Meeting | Nuclear Transients in ZTF + GW follow up | Simeon Reusch | 5 June 2023

c = 0.17711280 mw*ebv* = 0.068765168 $mwr_v = 3.1000000$

Feature extraction: SALT Fit (SN Ia)

z = 0.21352750 $t_0 = 2458493.3$ $x_0 = 2.6827823 \times 10^{-4}$ $x_1 = 8.3501711$

MMS Meeting | Nuclear Transients in ZTF + GW follow up | Simeon Reusch | 5 June 2023

c = 0.17711280 mw*ebv* = 0.068765168 $mwr_v = 3.1000000$

all bands

g-band

r-band

all bands

g-band

r-band

all bands

all bands

Features used (20 in total)

- peak apparent mag
- sgscore
- WISE colors (with scatter for noisified child lightcurves)
- SALT fit results (*c*, x_0 , x_1)
- TDE fit results (rise, decay, temp, d_temp)
- distnr (core distance, scaled for noisified child lightcurves)
- Bayesian block analysis: overlapping regions
- no z (only indirectly for some of the SALT fits)

Noisification

K-correct (bandpasses see different flux depending on object redshift)

Redshift

Random dropout

Wiggle time a bit

Generate child lightcurves:

Children per object SN la: 4 **TDE**: 155

MMS Meeting | Nuclear Transients in ZTF + GW follow up | Simeon Reusch | 5 June 2023

SN Ia: 12683 **TDE**: 10231 **SN** \neq **I**a: 10852 **AGN**: 8220 **star**: 505 **SN** \neq **Ia**: 10 **AGN**: 94 star: 0

Train XGBoost

train-validation fraction = 0.7

test fraction = 0.3

iterations

MMS Meeting | Nuclear Transients in ZTF + GW follow up | Simeon Reusch | 5 June 2023

hyper parameter search (9 parameters) with 50

XGBoost feature importance

Evaluation with test sample

Including noisified lightcurves in the test sample $SN (\neq Ia)$

SN Ia

True Type

Star

TDE

Evaluation with test sample

Not including noisified lightcurves in the test sample

AGN -

 $SN (\neq Ia)$

True Type

SN Ia

Star

TDE

Evaluation with test sample

Not including noisifiedAGNlightcurves in the test4sample $5N \ (\neq Ia)$

absolute numbers

True Type

SN Ia

Star

TDE

Evaluation with test sample

Not including noisified AGN lightcurves in the test sample $SN (\neq Ia)$

absolute numbers

True Type

SN Ia

Star

TDE

No we apply the classifier to the nuclear sample

after all cuts

MMS Meeting | Nuclear Transients in ZTF + GW follow up | Simeon Reusch | 5 June 2023

cut stage: exactly 1 flare

cut stage: exactly 1 flare

cut stage: exactly 1 flare

cut stage: exactly 1 flare

Compare to unsecure classifications pulled from the internet

Mag: 16.0-16.5

Marshal/Fritz/TNS vs. XGBoost Magnitudes: 16.0 - 16.5

Mag: 16.5-17.0

Marshal/Fritz/TNS vs. XGBoost Magnitudes: 16.5 - 17.0

Mag: 17.0-17.5

Marshal/Fritz/TNS vs. XGBoost Magnitudes: 17.0 - 17.5

Mag: 12 AGN 17.5-18.0 0 SN Ia True Type 3 SN (≠Ia) 0 Star 0 TDE AGN

MMS Meeting | Nuclear Transients in ZTF + GW follow up | Simeon Reusch | 5 June 2023

Marshal/Fritz/TNS vs. XGBoost Magnitudes: 17.5 - 18.0

Mag: 21 AGN 18.0-18.5 2 SN Ia True Type 0 SN (≠Ia) 0 Star 0 TDE AGN

Marshal/Fritz/TNS vs. XGBoost Magnitudes: 18.0 - 18.5

3	0	1	0	- 140
148	5	0	1	- 100
8	24	0	2	Objects
0	1	5	0	- 40
0	0	0	7	- 20
SN Ia Pr	SN (≠Ia) edicted Ty	Star	TDE	л <u>гт</u> 0

Mag: 17 AGN 18.5-19.0 0 SN Ia True Type 2 SN (≠Ia) 0 Star 1 TDE AGN

Marshal/Fritz/TNS vs. XGBoost Magnitudes: 18.5 - 19.0

3	6	0	4	- 120			
139	9	0	2	- 100			
17	33	0	1	- 60 - 60 - Objects			
0	0	2	0	- 40			
1	2	0	17	- 20			
SN Ia	SN (≠Ia)	Star	TDE	· · · · · · · · · · · · · · · · · · ·			
Predicted Type							

Mag: 19.0-19.5

Marshal/Fritz/TNS vs. XGBoost Magnitudes: 19.0 - 19.5

Mag: 19.5-20.0

Marshal/Fritz/TNS vs. XGBoost Magnitudes: 19.5 - 20.0

Mag: 20.0-20.5

Marshal/Fritz/TNS vs. XGBoost Magnitudes: 20.0 - 20.5

Mag: 20.5-21.0

Marshal/Fritz/TNS vs. XGBoost Magnitudes: 20.5 - 21.0

Questions

How to address uncertain classifications? Way to discard "bad" predictions? Waterfall plots?

Suggestions to improve on the training? E.g. normalization of features (numerical values)?

Anomaly detection?

No cut (6012 transients) Purity: 0.8% / Efficiency: 100.0 %

WISE colors (3191 transients) Purity: 1.5% / Efficiency: 95.9 %

Diagonal cut (1465 transients) Purity: 3.0% / Efficiency: 89.8 %

Temperature cut (583 transients) Purity: 7.4% / Efficiency: 87.8 %

Rise-decay cut (424 transients) Purity: 9.7% / Efficiency: 83.7 %

Chisquare cut (259 transients) Purity: 15.1% / Efficiency: 79.6 %

Bayesian block cut (189 transients) Purity: 18.0% / Efficiency: 69.4 %

Redshift distribution (including photoz, n=4883)

sgscore distribution

all objects

MMS Meeting | Nuclear Transients in ZTF + GW follow up | Simeon Reusch | 5 June 2023

Gaia stars

Tachibana & Miller, 2018 (PASP)

rb distribution

0.7% FNR 4% FPR

MMS Meeting | Nuclear Transients in ZTF + GW follow up | Simeon Reusch | 5 June 2023

Duev et al., 2019 (MNRAS)