Efficient cosmic-ray acceleration in RS Ophuichi's 2021 outburst revealed by H.E.S.S.

HELMHOLTZ

Ruslan Konno, MMS Annual Meeting 2023, Weizmann Institute of Science, 2023-06-06

H. E. S. S. Collaboration et al., Science 376, 6588, 77-80, 2022

SCAN ME

Image Credits: DESY/H.E.S.S., Science Communication Lab

H.E.S.S.

High Energy Stereoscopic System

H.E.S.S.

High Energy Stereoscopic System

H.E.S.S.

High Energy Stereoscopic System

IACTs

Imaging Atmospheric Cherenkov Telescopes

Credit: CTA

H.E.S.S. Some characteristics

Sky coverage

- Site is in Namibia, Southern Africa
- Open to the Southern Sky
- FoV ~ 5 x 5 Deg²

 10^{2}

 10°

- VHE* range (~50 GeV ~50 TeV)
- 1 TeV core energy

10⁶

10⁴

Introduction to Novae

- Transient phenomena originating in a binary containing a white dwarf (WD)
- WD accretes matter from companion until reaching critical mass
 → Ignition of a thermonuclear reaction → rapid expansion of hydrogen shell
- Increase in brightness $\Delta m \sim 8$ to 15
- Typical optical duration weeks to months
- Unlike SNe, progenitor survives and can erupt again → Recurrent Novae

Novae Why interest in VHE γ rays?

 Clear indication of astrophysical shocks from radio & X-rays
 → particle acceleration

Hjielming et al., ApJ, 305L, 71H, 1986 Mukai & Ishida, ApJ, 551, 1024M, 2001

- Known emitters of HE* γ rays
 - >15 detected with Fermi-LAT so far

Franckowiak, A&A, 609A, 120F, 2018

 Sources with similar shock physics seen in VHE (Eta Car)

> <u>H.E.S.S. Collaboration et al.,</u> <u>A&A, 635, A167, 2020</u>

RS Ophiuchi First Galactic VHE y-ray transient

- RS Ophiuchi (RS Oph) is a well known recurrent nova with 7 recorded eruptions
 - Latest eruption in August 2021
 - Extensive MWL follow-up campaign with >30 ATels
- H.E.S.S. nova criteria
 - Optical magnitude $m_V < 9$
 - High ejecta velocity v_{ej} > 1500 km/s
 - Coincident Fermi-LAT detection
- RS Oph
- M_V ~ 5 (AAVSO, 8th August 22:00 UTC)
 v_{ej} ≥ 2600km/s (ATel#143838, 9th August 15:00 UTC)
 Fermi-LAT ~ 6σ (ATel#143834, 9th August 05:00 UTC)

First nova to meet all H.E.S.S. criteria!

H.E.S.S. begins observations 9th Aug 18:17 UTC

Optical alert 8th Aug 22:20 UTC

Optical alertMoon break starts8th Aug 22:20 UTC13th Aug

Night	$T_{ m obs}$ (UTC)	Livetime (hours)	Significance (σ)
09 Aug. 2021	18:17:40	3.2	5.8 (6.4)
10 Aug. 2021	17:53:46	3.7 (2.8)	9.0 (7.1)
11 Aug. 2021	17:44:08	3.7	9.8 (9.6)
12 Aug. 2021	18:17:12	2.3	13.6
13 Aug. 2021	17:44:43	2.8	10.5 (9.4)

RS Ophiuchi Follow-up timeline

RS Ophiuchi Challenging data set

- γ-ray reconstruction relies on simulations with an assumed atmospheric transparency
 - Reconstruction will be wrong when real atmosphere deviates from simulations
 - \rightarrow Standard cut: Discard data with 20% deviations
- RS Oph observations taken during seasonal biomass burning → Low atmospheric transparency
 - Save the data!
 - \rightarrow Novel approach: Atmospheric corrections

Atmospheric corrections Crab study

- Cherenkov transparency coefficient: Ratio of Cherenkov photons not absorbed by the atmosphere.
 - Number of Cherenkov photons is ~linear to the energy of the γ-ray energy
 - → Correct the energy axes of the IRFs* with the transparency coefficient + test this on the Crab nebula

* Instrument Response Functions

Atmospheric corrections Crab study

RS Ophiuchi HE & VHE γ-ray evolution

Consistent decay index Offset between HE and VHE peaks ~2 days

 \rightarrow same physics \rightarrow energy is time-depend

RS Ophiuchi γ-ray evolution

- Broadband γ-ray spectral energy distribution well described by parabola
- Parabola flattens over time
 - HE flux falls
 - VHE rises to higher energies
- Two possible scenarios

 Cooling limited leptonic
 Confinement limited hadronic

RS Ophiuchi External shock model

- Expansion pinched in orbital direction
- Collision between ejecta and companion wind
- Formation of external shocks perpendicular to orbital plane
- Diffusive shock acceleration and cooling of electrons and protons
- Shock evolution similar to cc-SNe

Leptonic scenario

- Dominant cooling process: Inverse Compton
- Insufficient to re-produce observed spectrum
- Matching the data requires acceleration efficiency > 1%

 \rightarrow Inconsistent with shock physics

Hadronic scenario

- Dominant cooling process: π^0 decay
- Sufficient to re-produce observed spectrum
- Matching the data requires acceleration efficiency > 10%
 - \rightarrow Consistent with shock physics

Conclusion of H.E.S.S. (& MAGIC) detection

- New source class at VHE γ rays
- Time-resolved diffusive shock acceleration
- Acceleration at the theoretical limit in astrophysical shocks is possible
- Support for cc-SNe as potential PeVatrons
 - (similar but more extreme acceleration systems)

cc-Supernovae $\dot{M} \sim 3x10^{-5} M_{\odot} yr^{-1}$ $v_{wind} \sim 10 \text{ km/s}$ $E \sim 10^{51} \text{ erg}$ $M_{ej} \sim 10 M_{\odot}$

Exciting event ahead

- T Coronae Borealis (T Crb) stated to erupt in 2025.5 ± 1.3
- ~80 year period
 - 1866 : 2 peak mag
 - 1946 : 3 peak mag
- Very close : ~806 pc

Credit: AAVSO

Back-up

DSA Model

protons

$$E_{\text{max}} = 1.5 |Z| \left(\frac{\xi_{\text{esc}}}{0.01}\right) \left(\frac{\dot{M}/v_{\text{wind}}}{10^{11} \text{ kg m}^{-1}}\right)^{1/2} \left(\frac{u_{\text{sh}}}{5000 \text{ km s}^{-1}}\right) \text{ TeV} \qquad t_{\text{syn}} \approx 400 \left(\frac{E}{1 \text{ TeV}}\right)^{-1} \left(\frac{B}{1 \text{ G}}\right)^{-2} \text{ s}$$
electrons

$$E_{\text{max}} = 10 \left(\frac{u_{\text{sh}}}{5000 \text{ km/s}}\right) \left(\frac{R_{\text{sh}}}{au}\right) \left(\frac{B_{\star}}{1 \text{ G}}\right) \text{ TeV} \qquad t_{\text{IC,th}} \approx 15 \left(\frac{E}{1 \text{ TeV}}\right)^{-1} \left(\frac{\omega_{\text{ph}}}{1 \text{ erg cm}^{-3}}\right)^{-1}$$

$$\int_{0.1}^{0} \frac{A_{\text{sh}}}{au} \left(\frac{E_{\text{smax}} B_{\text{s}}}{B_{\text{s}}}\right) \frac{1}{2} \left(\frac{B_{\text{sh}}}{1 \text{ G}}\right) \text{ TeV} \qquad t_{\text{IC,th}} \approx 15 \left(\frac{B_{\text{sh}}}{1 \text{ TeV}}\right)^{-1} \left(\frac{B_{\text{sh}}}{1 \text{ erg cm}^{-3}}\right)^{-1}$$

S

Systematics

Sub-dominant: Monte-Carlo extensive air shower hadronic interaction models, broken pixels of the Cherenkov cameras, and the live time of the data set

Dominant: Atmospheric	parameters,	Moonlight
-----------------------	-------------	-----------

	Data set	ϕ_0	E_0	Index Γ
		$[10^{-11} \text{ TeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1}]$	[TeV]	
mono	09 Aug. 2021	$14.9 \pm (2.7)_{\text{stat.}} \pm (3.0)_{\text{syst.}}$	0.18	$3.22 \pm (0.38)_{\text{stat.}} \pm (0.20)_{\text{syst.}}$
	10 Aug. 2021	$25.2 \pm (4.7)_{\text{stat.}} \pm (5.0)_{\text{syst.}}$	0.18	$4.01 \pm (0.48)_{\text{stat.}} \pm (0.20)_{\text{syst.}}$
	11 Aug. 2021	$28.5 \pm (3.3)_{\text{stat.}} \pm (5.7)_{\text{syst.}}$	0.18	$3.15 \pm (0.23)_{\text{stat.}} \pm (0.20)_{\text{syst.}}$
stereo	09 Aug. 2021	$0.91 \pm (0.28)_{\text{stat.}} \pm (0.14)_{\text{syst.}}$	0.35	$4.24 \pm (0.75)_{\text{stat.}} \pm (0.15)_{\text{syst.}}$
	10 Aug. 2021	$1.90 \pm (0.32)_{ m stat.} \pm (0.38)_{ m syst.}$	0.35	$3.32 \pm (0.30)_{\text{stat.}} \pm (0.15)_{\text{syst.}}$
	11 Aug. 2021	$3.57 \pm (0.54)_{ m stat.} \pm (0.54)_{ m syst.}$	0.35	$4.08 \pm (0.42)_{\text{stat.}} \pm (0.20)_{\text{syst.}}$
	12 Aug. 2021	$3.00 \pm (0.33)_{\text{stat.}} \pm (0.45)_{\text{syst.}}$	0.35	$3.27 \pm (0.21)_{\text{stat.}} \pm (0.15)_{\text{syst.}}$
	13 Aug. 2021	$1.77 \pm (0.25)_{\text{stat.}} \pm (0.35)_{\text{syst.}}$	0.35	$3.24 \pm (0.24)_{\text{stat.}} \pm (0.15)_{\text{syst.}}$
stereo	25 Aug. 2021 - 07 Sep. 2021	$0.238 \pm (0.080)_{\text{stat.}} \pm (0.036)_{\text{syst.}}$	0.35	$3.33 \pm (0.45)_{\text{stat.}} \pm (0.15)_{\text{syst.}}$

Table S2: Nightly spectral measurements of RS Oph. Best-fitting nightly spectral parameters from H.E.S.S. assuming a power-law model of the form $\phi_0 \left(\frac{E}{E_0}\right)^{-\Gamma}$, with derived systematic uncertainties. E_0 is the reference energy, ϕ_0 is the amplitude at the reference energy and Γ is the spectral index.

Model parameters

Parameter	Symbol, unit	p-p model	IC model
Acceleration slope electrons	α_e	-	2.2
Acceleration slope protons	α_p	2.2	_
Cutoff exponent electrons	eta_e	_	0.5
Cutoff exponent protons	eta_p	0.5	-
Fraction of energy in electrons	κ_e	0	3%
Fraction of energy in protons	κ_p	50%	0
Acceleration efficiency of electrons	η_e	_	10π
Acceleration efficiency of protons	η_p	30π	_
Escape efficiency	$\xi_{ m esc}$	10^{-2}	_
Electron low energy cutoff	E_{\min}	_	$10^2 m_e c^2$
Proton low energy cutoff	E_{\min}	$2.m_pc^2$	_
RG surface magnetic field	B_*, G	1	
RG radius, au	R_*, au	0.35	
RG mass-loss rate	$\dot{M}/v_{ m w},{ m g}{ m cm}^{-1}$	6.3×10^{11}	
WD orbit radius	$r_{\rm orb}$, au	1.48	
Distance from Earth	kpc	1.4	
Ejecta initial speed	$v_{\rm ej,0}, {\rm km s^{-1}}$	30	00
Ejecta mass	$m_{ m ej}$	$10^{-7} M_{\odot}$	

Table S4: Numerical model parameters. Assumed parameters of the model used in equations (S3) through (S30) above, for the two cases of proton-proton (p-p) emission (see Figure S9) and a leptonic Inverse Compton (IC) model (see Figure S8) respectively.

Attenuation

Figure S10: Effect of gamma-gamma attenuation. A: Attenuation factor due to the gamma-gamma absorption on the thermal photons produced by the explosion assuming a distance of 1.4 kpc. B: The impact of the gamma-gamma absorption on the emission spectrum from night 1 for the source assumed distance of 1.4 kpc. The data points are the same as in Fig. S9

