Di-Higgs with missing transverse momentum at FCC-hh

Birgit Stapf, Elisabetta Gallo, Kerstin Tackmann

28.10.2022 | 15th Future Colliders @ DESY meeting

Di-Higgs with E_{τ}^{Miss} @ FCC-hh: What & why?

LUSTER OF EXCELLENCE

- FCC-hh: pp-collisions at 100 TeV, collect 30 ab⁻¹ of data in runtime of ~25 years
 - Operate at both the energy and precision frontier
 - Previously presented <u>general overview</u>
- Measuring the Higgs self-coupling via di-Higgs
 production is key benchmark for FCC-hh
 - SM: $\sigma(ggHH) \sim O(1000)$ smaller than $\sigma(ggH)$
 - Achieve precision through large cross-section and data-set, both given at FCC-hh: 20 x precision of LHC
 - Allows to access also rarer, more difficult channels
 - Update to $bbll+E_T^{Miss}$ analysis previously presented

Analysis overview & technical details

CLUSTER OF EXCELLENCE

OLIANTUM LINIVERSE

👭 Universität Hamburg

Analysis overview & technical details

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

Universität Hamburg

HH with E_{τ}^{Miss} @ FCC-hh | Birgit Stapf | 28.10.2022 | 15th Future Colliders @ DESY meeting

Universität Hamburg

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

bb	33.6%	Assumir	IG SM I BR H	Higgs H→>	s BR xyy	10-1	Signal	BR(HH→X)	Advantage
ww gg	24.8%		arXiv:1	708.0	<u>8249</u>	10-2	bbWW(lvlv)	2.24%	Largest BR in $bb+2l+E_T^{Miss}$ final state Established for <i>HH</i> -studies @ LHC
ττ	7.3%					10 ⁻³	bb <i>tt</i> (lvvlvv)	0.88%	<i>eµ</i> channel established for single Higgs studies @ LHC
γγ rarer	0.26% 0	.1%	ττ	77	γγ	10 ⁻⁵	bbZZ(llvv)	0.12%	Reconstruct $Z(ll)$ decay

- Signal signature: Lepton pair + E_T^{Miss} + 2 b-jets, three main categories
 - DFOS lepton pair ($e\mu$) bbWW and $bb\tau\tau$ signals
 - SFOS lepton pair (*ee* or $\mu\mu$), m_{μ} not on Z peak *bbWW* and *bbrr* signals
 - SFOS lepton pair (ee or $\mu\mu$), m_{ll} on Z peak bbZZ (and $bb\tau\tau$) signals

$bbll + E_T^{Miss}$ backgrounds

Universität Hamburg

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

New: More backgrounds

- Events at pre-selection level:
 - Require 2 b-jets, 2 leptons
- Extremely large background from \overline{tt}
 - Dileptonic final state irreducible
- Subleading contributions from $\bar{t}V$, and single Higgs production (all modes)
- How to suppress?

Event kinematics & selection

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

DESY.

🕌 Universität Hamburg

Event kinematics & selection

Universität Hamburg

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

DESY.

.. and variables more specifically targeted at a certain background, e.g. m_{lb}^{reco} to reduce \overline{tt}

• Defined for top-quark mass measurements in dileptonic channel

HH with E_T^{Miss} @ FCC-hh | Birgit Stapf | 28.10.2022 | 15th Future Colliders @ DESY meeting

Event kinematics & selection

CLUSTER OF EXCELLENCE

H Universität Hamburg

- Revisit events after full selection
 - Single top fully suppressed, most other backgrounds greatly

reduced, e.g. \overline{tt} acceptance 0.06%

- $S/\sqrt{B} \sim 7$ in the DFOS and SFOS, no Z categories (only 0.7 in SFOS, Z peak)
- Further exploit:
 - Categorize in bins of $|\Delta \phi(ll, E_T^{Miss})|$
 - Signal shape w.r.t . backgrounds

DFOS, high dPhi

Stransverse mass

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

DESY.

Universität Hamburg

DFOS, pre-selection

DFOS, low dPhi

- <u>Stransverse mass m_{T2} specific algorithm designed to predict invisible contribution to the</u> mass of a parent particle that decays semi-invisibly
 - Here: Capture the full *HH* decay

Results: Systematics

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

Universität Hamburg

Source of uncertainty	Scenario 1	Scenario 2	Scenario 3	Applies to	
Lepton ID / lepton	0.5%	1%	2%	$HH, t\bar{t}V(V) , H$	
b-jet ID / b-jet	0.5%	1%	2%	$HH, t\bar{t}V(V) , H$	
Luminosity	0.5%	1%	2%	$HH, t\bar{t}V(V) , H$	
Data-driven $V + jets$ est.	-	1%	1%	V + jets	
Data-driven $t\bar{t}$ est.	-	-	1%	$t\overline{t}$	
Signal cross-section	0.5%	1%	1.5%	HH	

- In addition to stat. only precision consider three scenarios for systematics
 - Following previous di-Higgs studies@FCC-hh
- Applied as rate systematics only, no shape effect (currently)

Results: Combined, expected sensitivity

• Signal strength μ_{HH}

Universität Hamburg

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

DESY.

• Higgs self-coupling modifier $\kappa_{\lambda} (= \lambda_3 / \lambda_3^{SM})$ interpretation with <u>HHInference</u> tools \circ Inputs: $\kappa_{\lambda} = 0.4, 1., 2.4, 3.0$

Results: bbll+MET in context

Universität Hamburg

CLUSTER OF EXCELLENCE

OLIANTUM UNIVERSE

- Most sensitive channels well explored already for FCC-hh potential
- Latest combined projection from *bbyy*, 4*b* and *bb* $\tau\tau$ (full + semi hadronic) achieves 2% (stat.only) precision on κ_{λ}
 - $bbll+E_T^{Miss}$ performance about factor 2 worse than 4b stand-alone, or <u>earlier studies of $bb\tau\tau$ </u>
- Compared to earlier studies, *bbll+E_T^{Miss}* performance similar to <u>much cleaner (but rarer) *bb4l*</u> and factor
 2 better than (more abundant) <u>semileptonic</u>
 bbWW(2jlv)

Work in progress: Impact of E_{T}^{Miss} performance degradation

CLUSTER OF EXCELLENCE

🚆 Universität Hamburg

- Reconstruction of E_T^{Miss} will get increasingly challenging in the future, due to the increasing pile-up
 - Not studied for the FCC-hh yet
 - Usually assume precise timing detectors will be available & suppress to ~ LHC levels

Work in progress: Impact of E_{T}^{Miss} performance degradation

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

💾 Universität Hamburg

- Reconstruction of ETMiss will get increasingly challenging in the future, due to the increasing pile-up
 - Not studied for the FCC-hh yet
 - Usually assume precise timing detectors will be available & suppress to max LHC levels
 From LHC experience, have an idea of what happens with increasing <µ>
 - Resolution broades, and mean may shift as well
 - Try to apply this with Gaussian+uniform smearing and check impact

Work in progress: Impact of E_{T}^{Miss} performance degradation

- First check: Resolution degraded by ~10%, recalculate the dependent variables in event selection and stransverse mass, check μ_{HH} precision (stat. only in DFOS category)
 - Impact very small

🚆 Universität Hamburg

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

DESY.

Conclusions & Outlook

- FCC-hh will bring precision measurement of Higgs self-coupling via di-Higgs
- Explored previously uncovered $bbll+E_T^{Miss}$ final state
 - bZZ(llvv), bbWW(lvlv) and $bb\tau\tau(lvvlvv)$ signals
- Simple cut-based analysis using kinematic variables, large background from ttbar
- Extracted μ_{HH} and κ_{λ} precision using DFOS+SFOS events and w. diff. systematics
 - μ_{HH} stat only precision reaches 8% stat only, 15% w. largest systematics
 - κ_{λ} 20% stat only, 35% w. largest systematics
- Work in progress:

Universität Hamburg

CLUSTER OF EXCELLENCE

- Studying impact of E_T^{Miss} performance further
- MVA analysis instead of cut-based
- Combination with other channels, also updating Delphes scenarios

Event selection & categorization

		Analysis category	
	DFOS	SFOS, no Z -peak	SFOS, on Z -peak
Main signals	$b\bar{b}WW^*,b\bar{b} au au$	$b\bar{b}WW^*,b\bar{b} au au$	$bar{b}ZZ^*,bar{b} au au$
Selection variable		Criterion	
Lepton pair	$e\mu$	$ee ext{ or } \mu\mu$	$ee ext{ or } \mu\mu$
Number of b-jets		≥ 2	
m_{bb}		85 - $105~{\rm GeV}$	
ΔR_{bb}		< 2	
$\Delta R_{\ell\ell}$		< 1.8	
$H_{\mathrm{T2}}^{\mathrm{ratio}}$		> 0.8	
$m_{lb}^{\rm reco}$		$> 150 { m ~GeV}$	
$\Delta \phi(\ell \ell, E_T^{ m miss})$		< 2	< 1.2
$m_{\ell\ell}$	10 -	$80 {\rm GeV}$	81 - 101 GeV
$\Delta \phi(\ell \overline{\ell, E_T^{\text{miss}}})$ -categories	< 1.2 ("low") and	nd $1.2 - 2.0$ ("high")	-

Table 3.25.: Overview of the harmonized event selection and categorization.

UH H Universität Hamburg

Example cutflows

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

Universität Hamburg

	Total acceptance in $\%$								
Criterion	Signal	$t\bar{t}$	Single top	V + jets	$t\bar{t}V$	$t\bar{t}VV$	Single Higgs		
$\geq 1 \text{ OS } e\mu$ -pair	100.00	100.00	100.00	100.00	100.00	100.00	100.00		
≥ 2 b-jets	100.00	100.00	100.00	100.00	100.00	100.00	100.00		
$85 < m_{bb} < 150 { m GeV}$	75.33	26.79	19.61	20.88	23.59	19.22	25.43		
$\Delta R_{bb} < 2$	65.10	10.38	5.88	17.55	11.14	11.00	14.86		
$10 < m_{\ell\ell} < 80 {\rm ~GeV}$	60.44	4.07	3.92	11.18	3.72	2.82	6.90		
$\Delta R_{\ell\ell} < 1.8$	56.30	2.38	1.96	11.18	2.23	2.00	4.82		
$ \Delta \phi(\ell \ell, E_T^{\text{miss}}) < 2$	50.82	1.61	0.00	11.18	1.53	1.57	3.96		
$H_{\mathrm{T2}}^{\mathrm{ratio}} > 0.8$	47.61	1.08	0.00	11.18	1.18	1.37	3.45		
$m_{lb}^{ m reco} > 150 { m ~GeV}$	26.58	0.06	0.00	11.18	0.30	0.59	1.64		

Table 3.17.: Absolute acceptances of the event selection criteria for $b\bar{b}WW^*(e\mu + E_{\rm T}^{\rm miss})$ signal and backgrounds. The pre-selected number of events as given in Table 3.15 is used as a reference to determine the absolute acceptance for each process.

Example cutflows

CLUSTER OF EXCELLENCE

OLIANTUM LINIVERSE

			Expecte	ed events wit			
Criterion	Signal	$tar{t}$	Single top	V + jets	$t \bar{t} V$	$t\bar{t}VV$	Single Higgs
$\geq 1 \text{ OS } e\mu$ -pair	7.06E + 04	$1.86E{+}10$	8.07E + 06	2.02E + 06	3.43E + 07	1.28E + 06	3.23E + 07
≥ 2 b-jets	7.06E + 04	1.86E + 10	8.07E + 06	2.02E + 06	$3.43E{+}07$	1.28E + 06	3.23E + 07
$85 < m_{bb} < 150 { m GeV}$	5.32E + 04	4.97E + 09	1.58E + 06	4.22E + 05	8.09E + 06	2.46E + 05	8.23E + 06
$\Delta R_{bb} < 2$	4.60E + 04	1.93E + 09	4.75E + 05	3.55E + 05	3.82E + 06	1.41E + 05	4.81E + 06
$10 < m_{\ell\ell} < 80 {\rm ~GeV}$	4.27E + 04	7.56E + 08	3.16E + 05	2.26E+05	1.28E + 06	3.61E + 04	2.23E + 06
$\Delta R_{\ell\ell} < 1.8$	3.98E + 04	4.41E + 08	1.58E + 05	2.26E + 05	7.66E + 05	2.56E + 04	1.56E + 06
$ \Delta \phi(\ell \ell, E_T^{\text{miss}}) < 2$	3.59E + 04	2.99E + 08	0.00E + 00	2.26E + 05	5.25E + 05	2.00E + 04	1.28E + 06
$H_{\mathrm{T2}}^{\mathrm{ratio}} > 0.8$	3.36E + 04	2.01E + 08	0.00E + 00	2.26E + 05	4.04E + 05	1.75E + 04	1.12E + 06
$m_{lb}^{ m reco} > 150~{ m GeV}$	1.88E+04	$1.08\mathrm{E}{+07}$	$0.00\mathrm{E}{+00}$	$2.26\mathrm{E}{+}05$	$1.03E{+}05$	$7.61\mathrm{E}{+03}$	$5.30\mathrm{E}{+}05$

Table 3.15.: Cutflow of the kinematic event selection for the $b\bar{b}WW^*$ $(e\mu)$ signal and backgrounds. Expected numbers of events with a dataset of 30 ab⁻¹ are shown, using the cross-sections from Table 3.1 to normalize. Here all samples were pre-filtered with the pre-selection.

Example cutflows

Universität Hamburg

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

			Relati				
Criterion	Signal	$tar{t}$	Single top	V + jets	$t\bar{t}V$	$t\bar{t}VV$	Single Higgs
$\geq 1 \text{ OS } e\mu$ -pair	100.00	100.00	100.00	100.00	100.00	100.00	100.00
≥ 2 b-jets	100.00	100.00	100.00	100.00	100.00	100.00	100.00
$85 < m_{bb} < 150 { m GeV}$	75.33	26.79	19.61	20.88	23.59	19.22	25.43
$\Delta R_{bb} < 2$	86.43	38.74	30.00	84.06	47.24	57.25	58.44
$10 < m_{\ell\ell} < 80 {\rm ~GeV}$	92.83	39.26	66.67	63.70	33.39	25.61	46.42
$\Delta R_{\ell\ell} < 1.8$	93.14	58.30	50.00	100.00	60.02	70.94	69.83
$ \Delta\phi(\ell\ell, E_T^{\rm miss}) < 2$	90.27	67.94	0.00	100.00	68.48	78.35	82.27
$H_{\mathrm{T2}}^{\mathrm{ratio}} > 0.8$	93.70	67.03	0.00	100.00	76.96	87.16	87.10
$m_{lb}^{ m reco} > 150 { m ~GeV}$	55.81	5.37	0.00	100.00	25.57	43.55	47.44

Table 3.16.: Relative acceptances of the event selection criteria for $b\bar{b}WW^*(e\mu + E_T^{\text{miss}})$ signal and backgrounds. The relative acceptance is calculated at the number of events at a given criterion, divided by that at the previous criterion.

BDT for bbZZ

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

DESY.

• Masters thesis by Kevin Laudamus

Others classification

Universität Hamburg

 BDT able to improve bbZZ upper limits from ~ 4 to ~2-2.5, depending on setup, also has higher signal efficiency

tt classification

Signal classification

HH with E_T^{Miss} @ FCC-hh | Birgit Stapf | 28.10.2022 | 15th Future Colliders @ DESY meeting

Corners of phase-space: High pT

S/B improves in high Higgs p_{T} region, may be possible with a dataset as large as 30 ab^{-1} \rightarrow Analysis would require reoptimization

Universität Hamburg

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

DESY.

What about kinematic correlations between individual H and the virtual H? Bias towards one of the diagrams?

Corners of phase-space: Jet multiplicity

- Backgrounds seem to have more additional, untagged jets with higher pT
 - Veto on extra jets, or categories in jet-multiplicities might enhance potential
- However, this introduces extra uncertainties from theory side!
 - Set a pT threshold for the extra jets, here: 50 GeV

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

DESY.

Universität Hamburg

HT2 ratio

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

DESY.

• Definition following ATLAS analysis of *bblvlv* channel: <u>arXiv:1908.06765</u>

$$H_{T2}$$
Scalar sum of the magnitudes of the momenta of the $H \to \ell \nu \ell \nu$ and $H \to bb$ systems, $H_{T2} = |\mathbf{p}_T^{\text{miss}} + \mathbf{p}_T^{\ell,0} + \mathbf{p}_T^{\ell,1}| + |\mathbf{p}_T^{b,0} + \mathbf{p}_T^{b,1}|$ H_{T2}^R Ratio of H_{T2} and scalar sum of the transverse momenta of the H decay products, $H_{T2}^R = H_{T2}/(E_T^{\text{miss}} + |\mathbf{p}_T^{\ell,0}| + |\mathbf{p}_T^{b,0}| + |\mathbf{p}_T^{b,1}|),$

where $\mathbf{p}_{T}^{\ell(b),0\{1\}}$ are the transverse momenta of the leading {subleading} lepton (*b*-tagged jet)

Why di-Higgs at FCC-hh?

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

DESY.

Universität Hamburg

FCC-hh is the only perspective for a Higgs self-coupling precision measurement ↔ Higgs self-coupling measurement is a clear benchmark channel for the FCC-hh