HLS4MIL. CONCEPTS AND APPLICATIONS

NemMER CHIEDDE

Supervisor: Emmanuel MONNIER

Co-supervisor: Georges AAD

(
(wxMeseite SOATIAS e
imitiative 'excelle EXPERIMENT IN2P3 CPPM

19 september 2022 Centre de Physique des Particules de Marseille Nemer CHIEDDE 1

CONTENT

Introduction

High Level Synthesis for Machine Learning workflow
Package Architecture supports

HLS4ML with RNNs and optimizations

HLS / VHDL differences and optimizations

User perspectives

INTRODUCTION

HLS4ML is an open source software designed to facilitate the implementation of Al algorithms on FPGAs.

Performs automatically the task of translating a trained NN, specified by the model’s architecture, weights, and
bias, firmware for a specific hardware

Comes with implementation of common ingredients (layers, activation functions, binary NN, ...)
Available for Vivado (Xilinx) and recently for Quartus (Intel)

o Iimplemented the RNNs for Quartus

o IIncluded some scripts and tools for hls conversion and inspection

RNN for Quartus is now supported (link)

HLS4ML code available on Github (link)

HLS4ML can be found on this documentation (link) h I S 1 I

https://github.com/fastmachinelearning/hls4ml/pull/575
https://github.com/fastmachinelearning/hls4ml
https://fastmachinelearning.org/hls4ml/

HLS4MIL. WORKFLOW

HLS4ML is a python package

Create optimal digital design: balance available resources with achieving the target power, latency,

Blue section translates a model into an HLS design
that can later be synthesized and implemented on
an FPGA or ASIC, example:

Red section describes the usual steps needed to design a
NN for a specific task

o Definition of the model structure .
o Run fully in parallel or concurrently, control

the inference latency versus utilization of

o Compression drop zero weights to reduce the
FPGA resources

resource usage

o Quantization reduce precision of the
= Keras calculations

// \, TensorFlow
/ PyTo rch

: Model '|/ h|S 4 m| o Activations functions used as LUT don't need

_//\ T calculations reducing the resource used
\
[Compressed |

\ model ,’ — HLS
N/ |conversion / - Black section is the options to export the HLS
ASIC flow i

project generated by HLS4ML

Machine learning model
optimization, compression

Tune conflgurauon
atency hro ; |:
power, resoul 3,-,-

HLS4MIL. PACKAGE ARCHITECTURE

Internal structure is divided in six principles packages
Model converters:
o Convert the NN model into a common internal representation
of the network graph

o Support Keras, QKeras, TensorFlow, PyTorch, and ONNX model
formats

e Optimizers:

Model
converters

Y

Configuration

HLS Model

A A

A\

Utilities

N\

Optimizers

Backend

Project Writer

nnet_utils

o Modify the network graph to target a more lightweight, faster inference.

o Reduce operations at runtime

o Examples:

= Ix1 convolution uses optimized HLS code implementation reducing latency
m Automatic removal of Softmax if it is present in the last layer (avoiding redundancy)

HLS4 ML ADAPTABILITY

Utilities:
o Provides a set of utilities to aid the configuration process, so the model object can be inspected

o Can display the NN graph with the user configuration

Configuration:
o Provides a number of configurable parameters which can help the user explore and customize

- “precision”: Bitwith size for weights, recurrent weights and bais (ap_fixed<16, 6> by default)
- “table_size”: Lookup table (1024 by default)

- “ReuseFactor”: Lower reuse factor reduces latency and higher resources (1 by default)

- “Strategy”: resources or latency (not added yet for quartus)

- “io_type”: parallel, stream (Parallel by default)

- “clock_period”: Clock frequency (5 ns or 200 MHz by default)

- “backend”: Possible to use Vivado, VivadoAccelerator and Quartus (Vivado by default)

- “part”: FPGA part (xckull5-flvb2104-2-i by default)

o Each layer and activation type is implemented as a separate configurable module customized to perform
that specific operation

HILS4MIL. MODEL

e Backend:
o Used to export the model into a given specific language, such as Intel HLS, Vivado HLS

o Possibility that the CPU runs the conversion and obtains the numerical results

o Project writers:
m Overwrite HLS and generate hardware modules

o Nnet utils:

m Apply the neural networks requested on the NN model
m Support multi features and return sequences

m NN architectures: Fully Connected NNs (Dense), Convolutional NNs (1D, 2D), Recurrent RNN (GRU,
Simple-RNN, LSTM)

®m Activations and normalization are added on nnets (pooling and batch normalization)

e HLS Model
o File generated to produce an IP core

HLS DEFINITION

High Level Synthesis is an automated design procedure
Converts the algorithmic description of a system into the corresponding hardware circuit.

The synthesis tool generates the technical detail
o Creates a Register Level Transfer (RTL) implementation from C++ (link)

Developed HLS from scratch for our specific use case
o Already found to have a good energy resolutions (link)
o Used as comparateur for hls4ml RNN implementation

https://www.intel.fr/content/www/fr/fr/software/programmable/quartus-prime/hls-compiler.html
http://cds.cern.ch/record/2775033/files/Aad2021_Article_ArtificialNeuralNetworksOnFPGA.pdf

HLS4ML SYNTHESIS TOOLS AND VALIDATION

e From HLS Model it is possible to do:
o Csimulation: Numerical results
o HLS Synthesis: Numerical results and RTL synthesis
o Full Synthesis: Place and route, time analysis, numerical results and RTL synthesis

o Export: Export [P

SUPPORT OF RNN MODELS oN HLS4ML

HLS4ML didn’t support RNNs nor Quartus, so I implemented the LSTM and Vanilla-RNN and some optimizations

o LSTM cell: more complex, highest accuracy, more resources used.

m Two activation functions (Hyperbolic tangent and sigmoid)
(@]

Vanilla-RNN or Simple-RNN cell: simplest, less resources used, less performing than LSTM.
= One activation function (ReLU)

2

2

x (s
Q2 [tenh] ~
Q. (%]
§ ~l
(7]

10

SYMMETRIC OPTIMIZATION LUT APPLIED

To improve resource usage, it is possible to apply half the table
size usage using the symmetric softsign, sigmoid and tanh

properties (e.g. sig(-x)=-sig(x))

Already implemented in hls and already available on master

Optimizing the LUT’s gives an higher precision for the same

resources usage value

Sigmoid and hyperbolic tangent LUT output strictly between -1

and I:
o no need for integer bits

Ressource used [% FPGA]

I QUARTUS HLS Simulation - ALUT
L & FIFO
B ¥ RAM
r T
1 3 —
F - - —
107 il
Fa—a —
1072
¥ F < 3
w o o o
- N <
LUT Size [Word]

0003; Naive Implemention 0.1

0.002

Eref

Enew
1
o
o
[++]
Normalized to unity

—0.00%5.96.20.30.40.50.60.70.80.9 1
Eref

o
o

E E: Symmetric implementation 0.12 ‘g

20.002_ e

[o

[5 @

w N

0.001— ®

- E

[’ S

0 2
-0.001
-0.002—

mA (SETREETTTI FRNTERETT] PR FUNt FYTN [TRRRETT TR FTve,
0.00355.10.20.30-40.50.60.70.80.6 1
Eref

@00.:—
i Centered Implementation

0.001-

i, =012 §
;0.002: o
2 —01 3
w N
©
£
S
=z

" n ol L ol
QOO(&O 0.10.20.30.40.50.60.70.80.9 1 0 /
Eref

INTERNAL FIXED POINT EFFECTS

The internal fixed point representation affects directly the performance of the output and the resource

used (Etienne’s thesis)

o Especially for DSP, which is the most used when applying multiplications

For the FPGA type statix 10, the precision DSP blocks for 2 variable are:

o Fixed-point complex 18 x 19 multiplication

After the multiplication, the 37 bits generated can be casted now in a different internal fixed point
representation and not more in 19 bits.
o) Other math calculations, like adder, can obtain more precision using a different internal
representation fixed point after the first multiplication

-

bais: 19 fixed point bits

weight: 19 fixed point bits

data: 18 fixed point bits

:

internal types

ultiplication

Adder

~

internal types

12

ActuaL LSTM coMPARISON BETWEEN HLS anp HLS4ML

£ delta_plot R i
3 10°F e E(hismi)- E(keras) e f energy_plot
e HLS output already found = - o E(hls)- E(keras) B . Egﬁff)as)
r ° - N 1L (] S
to have a good energy S E{hls4ml) - Efhle) s 10] o E(hisdmi)
resolutions £ 10°F 5 i
=2 F < i
. B 1072
e No difference between i :
his reference and hls4ml 107 [
- W 1%
U I : OFL”'H - "0 02 04 06 08 1

E[meV]

Latency Il Target
(min, max,avg) (min, max, avg) frequency

Stratix10 1SG280HU2F50E2VG

HLS (ETiENNE PHD) 325,353,339 400 MHz

HLS4ML WITH NO OPTIMIZATIONS 9% 7% 14% 22% 322, 346, 322 1,1,1 400 MHz

HLS4ML witH LUT OPTIMIZATION 9% 6% 8% 22% 322,346, 322 1, 1,1 400 MHz

HLS4ML WITH PRESENTED OPTIMIZATIONS 8% 6% 4% 13% 320,326,325 1,1,1 400 MHz

13

ExAMPLES OF OTHERS RECURRENT NEURAL NETWORKS

LSTM

Quartus simulation for LSTM
FPGA type Stratix 10 and target freq at 400 MHz

Model A
800000 -

600000 A

400000 -

200000

-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20
Eguartus_E;geras [Gev]

Quartus simulation for LSTM
FPGA type Stratix 10 and target freq at 400 MHz

Model B
80000 1

60000

40000 -

20000 A

T T T T T T T T T
-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20
ERuats _ pheras [Gey]

Model A

Model B

Layer (type) Output Shape Param #
1stm 6 (LSTM) (None, 4) 96
dense 7 (Dense) (None, 8) 40
dense 8 (Dense) (None, 1) 9

Total params: 145
Trainable params: 145
Non-trainable params: ©

° The activation and recurrent activation function of
LSTM was Tanh and Sigmoid. For the both Dense

was Relu
Layer (type) Output Shape Param #
1stm 4 (LSTM) (None, 4) 96
dense 4 (Dense) (None, 1) 5

Total params: 101
Trainable params: 101
Non-trainable params: @

° The activation and recurrent activation function
of LSTM was Sigmoid and Tanh. Dense was Relu

14

VHDL IMPLEMENTATION

Manually setting the placement constraints allows us to reduce the timing issue

O

Impossible to replace on HLS
Duplicate the recurrent kernel cell reduce the mean path between the weights and the DSPs

Synchronization inside of the cell at the critical path on the RTL code

Type Number of network | Multiplexing | Number of channel | ALM DSP Memory Fmax
Specifications X X 384 30% 70% 30% Mult * 40 MHz
without placement 28 14 392 18.2% | 66.1% 15.8% 501 MHz
with placement 28 14 392 18.2% | 66.1% 15.8% 531 MHz

Incremental compilation

O

Fixing some crucial FPGA areas and using incremental compilation, it's possible to reach

higher frequencies

Type Number of network | Multiplexing | Number of channel | ALM DSP | Memory Fmax
Specifications X X 384 30% T0% 30% Mult * 40 MHz
first compilation 28 14 392 18.2% | 66.1% 15.8% 531 MHz
incremental compilation 28 14 392 18.2% | 66.1% 15.8% 561 MHz

15

(GENERAL STATUS AND PERSPECTIVES

e Software package for translation of trained neural networks into synthesizable FPGA firmware

e RNN are now available on github master for Quartus

e HLS4ML can be used for quick start and optimization of NN params. However, final VHDL optimization is
needed if hard constraint have to be met on latency and resource usage.

16

