
HLS4ML CONCEPTS AND APPLICATIONS

1

Supervisor: Emmanuel MONNIER

 Co-supervisor: Georges AAD

 19 september 2022 Centre de Physique des Particules de Marseille Nemer CHIEDDE

NEMER CHIEDDE

2

CONTENT

● Introduction

● High Level Synthesis for Machine Learning workflow

● Package Architecture supports

● HLS4ML with RNNs and optimizations

● HLS / VHDL differences and optimizations

● User perspectives

3

INTRODUCTION

● HLS4ML is an open source software designed to facilitate the implementation of AI algorithms on FPGAs.

● Performs automatically the task of translating a trained NN, specified by the model’s architecture, weights, and
bias, firmware for a specific hardware

● Comes with implementation of common ingredients (layers, activation functions, binary NN, ...)

● Available for Vivado (Xilinx) and recently for Quartus (Intel)
○ I implemented the RNNs for Quartus
○ I Included some scripts and tools for hls conversion and inspection

● RNN for Quartus is now supported (link)

● HLS4ML code available on Github (link)

● HLS4ML can be found on this documentation (link)

https://github.com/fastmachinelearning/hls4ml/pull/575
https://github.com/fastmachinelearning/hls4ml
https://fastmachinelearning.org/hls4ml/

4

HLS4ML WORKFLOW

- Red section describes the usual steps needed to design a
NN for a specific task

○ Definition of the model structure

○ Compression drop zero weights to reduce the
resource usage

● HLS4ML is a python package

● Create optimal digital design: balance available resources with achieving the target power, latency, ….

- Blue section translates a model into an HLS design
that can later be synthesized and implemented on
an FPGA or ASIC, example:

○ Run fully in parallel or concurrently, control
the inference latency versus utilization of
FPGA resources

○ Quantization reduce precision of the
calculations

○ Activations functions used as LUT don’t need
calculations reducing the resource used

- Black section is the options to export the HLS
project generated by HLS4ML

5

HLS4ML PACKAGE ARCHITECTURE

● Internal structure is divided in six principles packages

● Model converters:
○ Convert the NN model into a common internal representation

of the network graph

○ Support Keras, QKeras, TensorFlow, PyTorch, and ONNX model
formats

Configuration

HLS Model Utilities

Model
converters

Backend

Optimizers

nnet_utilsProject Writer

● Optimizers:
○ Modify the network graph to target a more lightweight, faster inference.

○ Reduce operations at runtime

○ Examples:
■ 1x1 convolution uses optimized HLS code implementation reducing latency
■ Automatic removal of Softmax if it is present in the last layer (avoiding redundancy)

6

HLS4ML ADAPTABILITY

● Utilities:
○ Provides a set of utilities to aid the configuration process, so the model object can be inspected

○ Can display the NN graph with the user configuration

● Configuration:
○ Provides a number of configurable parameters which can help the user explore and customize

- “precision”: Bitwith size for weights, recurrent weights and bais (ap_fixed<16, 6> by default)
- “table_size”: Lookup table (1024 by default)
- “ReuseFactor”: Lower reuse factor reduces latency and higher resources (1 by default)
- “Strategy”: resources or latency (not added yet for quartus)
- “io_type”: parallel, stream (Parallel by default)
- “clock_period”: Clock frequency (5 ns or 200 MHz by default)
- “backend”: Possible to use Vivado, VivadoAccelerator and Quartus (Vivado by default)
- “part”: FPGA part (xcku115-flvb2104-2-i by default)

○ Each layer and activation type is implemented as a separate configurable module customized to perform
that specific operation

7

HLS4ML MODEL

● Backend:
○ Used to export the model into a given specific language, such as Intel HLS, Vivado HLS

○ Possibility that the CPU runs the conversion and obtains the numerical results

○ Project writers:
■ Overwrite HLS and generate hardware modules

○ Nnet utils:
■ Apply the neural networks requested on the NN model
■ Support multi features and return sequences
■ NN architectures: Fully Connected NNs (Dense), Convolutional NNs (1D, 2D), Recurrent RNN (GRU,

Simple-RNN, LSTM)
■ Activations and normalization are added on nnets (pooling and batch normalization)

● HLS Model
○ File generated to produce an IP core

8

HLS DEFINITION

● High Level Synthesis is an automated design procedure

● Converts the algorithmic description of a system into the corresponding hardware circuit.

● The synthesis tool generates the technical detail
○ Creates a Register Level Transfer (RTL) implementation from C++ (link)

● Developed HLS from scratch for our specific use case
○ Already found to have a good energy resolutions (link)
○ Used as comparateur for hls4ml RNN implementation

https://www.intel.fr/content/www/fr/fr/software/programmable/quartus-prime/hls-compiler.html
http://cds.cern.ch/record/2775033/files/Aad2021_Article_ArtificialNeuralNetworksOnFPGA.pdf

9

HLS4ML SYNTHESIS TOOLS AND VALIDATION

● From HLS Model it is possible to do:

○ C simulation: Numerical results

○ HLS Synthesis: Numerical results and RTL synthesis

○ Full Synthesis: Place and route, time analysis, numerical results and RTL synthesis

○ Export: Export IP

10

SUPPORT OF RNN MODELS ON HLS4ML

● HLS4ML didn’t support RNNs nor Quartus, so I implemented the LSTM and Vanilla-RNN and some optimizations

○ LSTM cell: more complex, highest accuracy, more resources used.
■ Two activation functions (Hyperbolic tangent and sigmoid)

○ Vanilla-RNN or Simple-RNN cell: simplest, less resources used, less performing than LSTM.
■ One activation function (ReLU)

LS
TM

Si
m
pl
e-
R
N
N

SYMMETRIC OPTIMIZATION LUT APPLIED

● To improve resource usage, it is possible to apply half the table
size usage using the symmetric softsign, sigmoid and tanh
properties (e.g. sig(-x)=-sig(x))

● Already implemented in hls and already available on master

● Optimizing the LUT’s gives an higher precision for the same
resources usage value

● Sigmoid and hyperbolic tangent LUT output strictly between -1
and 1:

○ no need for integer bits

12

INTERNAL FIXED POINT EFFECTS
● The internal fixed point representation affects directly the performance of the output and the resource

used (Etienne’s thesis)
○ Especially for DSP, which is the most used when applying multiplications

● For the FPGA type statix 10, the precision DSP blocks for 2 variable are:
○ Fixed-point complex 18 x 19 multiplication

● After the multiplication, the 37 bits generated can be casted now in a different internal fixed point
representation and not more in 19 bits.

○ Other math calculations, like adder, can obtain more precision using a different internal
representation fixed point after the first multiplication

Multiplication Adder

internal types
data: 18 fixed point bits

weight: 19 fixed point bits

bais: 19 fixed point bits

internal types

13

ACTUAL LSTM COMPARISON BETWEEN HLS AND HLS4ML
 delta_plot

● E(hls4ml) - E(keras)
● E(hls) - E(keras)
● E(hls4ml) - E(hls)

 energy_plot
● E(keras)
● E(hls)
● E(hls4ml)

Stratix10 1SG280HU2F50E2VG LUTs FFs RAMs DSPs Latency
(min, max,avg)

II
(min, max, avg)

Target
frequency

HLS (ETIENNE PHD) 8% 6% 4% 13% 325,353,339 1, 1, 1 400 MHz

HLS4ML WITH NO OPTIMIZATIONS 9 % 7% 14% 22% 322, 346, 322 1, 1, 1 400 MHz

HLS4ML WITH LUT OPTIMIZATION 9 % 6% 8% 22% 322, 346, 322 1, 1, 1 400 MHz

HLS4ML WITH PRESENTED OPTIMIZATIONS 8% 6% 4% 13% 320,326,325 1, 1, 1 400 MHz

● HLS output already found

to have a good energy
resolutions

● No difference between
hls reference and hls4ml

14

EXAMPLES OF OTHERS RECURRENT NEURAL NETWORKS
LSTM

14

● The activation and recurrent activation function of
LSTM was Tanh and Sigmoid. For the both Dense
was Relu

● The activation and recurrent activation function
of LSTM was Sigmoid and Tanh. Dense was Relu

M
od

el
 A

M
od

el
 B

15

VHDL IMPLEMENTATION

● Manually setting the placement constraints allows us to reduce the timing issue
○ Impossible to replace on HLS

● Duplicate the recurrent kernel cell reduce the mean path between the weights and the DSPs

● Synchronization inside of the cell at the critical path on the RTL code

● Incremental compilation
○ Fixing some crucial FPGA areas and using incremental compilation, it’s possible to reach

higher frequencies

16

GENERAL STATUS AND PERSPECTIVES

● Software package for translation of trained neural networks into synthesizable FPGA firmware

● RNN are now available on github master for Quartus

● HLS4ML can be used for quick start and optimization of NN params. However, final VHDL optimization is
needed if hard constraint have to be met on latency and resource usage.

