HLS4ML concepts and applications

NEMER CHIEDDE

Supervisor: Emmanuel MONNIER

Co-supervisor: Georges AAD

19 september 2022

Centre de Physique des Particules de Marseille

1

CONTENT

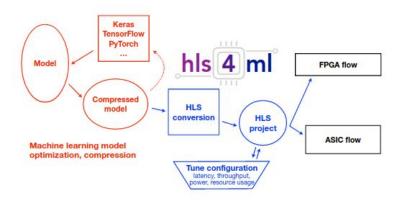
- Introduction
- High Level Synthesis for Machine Learning workflow
- Package Architecture supports
- HLS4ML with RNNs and optimizations
- HLS / VHDL differences and optimizations
- User perspectives

INTRODUCTION

- HLS4ML is an open source software designed to facilitate the implementation of AI algorithms on FPGAs.
- Performs automatically the task of translating a trained NN, specified by the model's architecture, weights, and bias, firmware for a specific hardware
- Comes with implementation of common ingredients (layers, activation functions, binary NN, ...)
- Available for Vivado (Xilinx) and recently for Quartus (Intel)
 - I implemented the RNNs for Quartus
 - I Included some scripts and tools for hls conversion and inspection
- **RNN** for Quartus is now supported (<u>link</u>)
- HLS4ML code available on Github (<u>link</u>)
- HLS4ML can be found on this documentation (<u>link</u>)

HLS4ML WORKFLOW

- HLS4ML is a python package
- Create optimal digital design: balance available resources with achieving the target power, latency,
- **Red section** describes the usual steps needed to design a NN for a specific task
 - Definition of the model structure
 - Compression drop zero weights to reduce the resource usage



- Blue section translates a model into an HLS design that can later be synthesized and implemented on an FPGA or ASIC, example:
 - Run fully in parallel or concurrently, control the inference latency versus utilization of FPGA resources
 - Quantization reduce precision of the calculations
 - Activations functions used as LUT don't need calculations reducing the resource used
- **Black section** is the options to export the HLS project generated by HLS4ML

HLS4ML PACKAGE ARCHITECTURE

- Internal structure is divided in six principles packages
- Model converters:
 - Convert the NN model into a common internal representation of the network graph
 - Support Keras, QKeras, TensorFlow, PyTorch, and ONNX model formats
- Model Converters Configuration HLS Model Utilities Optimizers Backend Project Writer nnet_utils

- Optimizers:
 - Modify the network graph to target a more lightweight, faster inference.
 - Reduce operations at runtime
 - Examples:
 - 1x1 convolution uses optimized HLS code implementation reducing latency
 - Automatic removal of Softmax if it is present in the last layer (avoiding redundancy)

HLS4ML adaptability

- Utilities:
 - Provides a set of utilities to aid the configuration process, so the model object can be inspected
 - Can display the NN graph with the user configuration
- Configuration:
 - Provides a number of configurable parameters which can help the user explore and customize
 - **"precision":** Bitwith size for weights, recurrent weights and bais (*ap_fixed*<16, 6> *by default*)
 - "table_size": Lookup table (1024 by default)
 - "ReuseFactor": Lower reuse factor reduces latency and higher resources (1 by default)
 - "Strategy": resources or latency (not added yet for quartus)
 - "io_type": parallel, stream (Parallel by default)
 - "clock_period": Clock frequency (5 ns or 200 MHz by default)
 - "backend": Possible to use Vivado, VivadoAccelerator and Quartus (Vivado by default)
 - **"part"**: FPGA part (xcku115-flvb2104-2-i by default)
 - Each layer and activation type is implemented as a separate configurable module customized to perform that specific operation

HLS4ML MODEL

- Backend:
 - Used to export the model into a given specific language, such as Intel HLS, Vivado HLS
 - Possibility that the CPU runs the conversion and obtains the numerical results
 - Project writers:
 - Overwrite HLS and generate hardware modules
 - Nnet utils:
 - Apply the neural networks requested on the NN model
 - Support multi features and return sequences
 - NN architectures: Fully Connected NNs (Dense), Convolutional NNs (1D, 2D), Recurrent RNN (GRU, Simple-RNN, LSTM)
 - Activations and normalization are added on nnets (pooling and batch normalization)
- HLS Model
 - File generated to produce an IP core

HLS DEFINITION

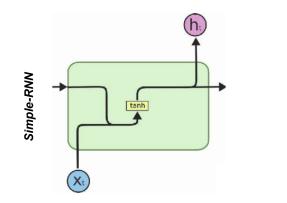
- High Level Synthesis is an automated design procedure
- Converts the algorithmic description of a system into the corresponding hardware circuit.
- The synthesis tool generates the technical detail
 - Creates a Register Level Transfer (RTL) implementation from C++ (<u>link</u>)
- Developed HLS from scratch for our specific use case
 - Already found to have a good energy resolutions (<u>link</u>)
 - Used as comparateur for hls4ml RNN implementation

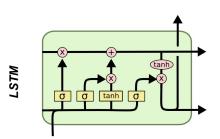
HLS4ML synthesis tools and validation

- From HLS Model it is possible to do:
 - **C simulation:** Numerical results
 - **HLS Synthesis:** Numerical results and RTL synthesis
 - **Full Synthesis:** Place and route, time analysis, numerical results and RTL synthesis
 - **Export:** Export IP

Support of $RNN\ \text{models}$ on HLS4ML

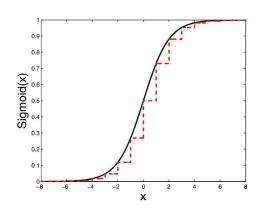
- HLS4ML didn't support RNNs nor Quartus, so I implemented the LSTM and Vanilla-RNN and some optimizations
 - LSTM cell: more complex, highest accuracy, more resources used.
 - Two activation functions (Hyperbolic tangent and sigmoid)
 - Vanilla-RNN or Simple-RNN cell: simplest, less resources used, less performing than LSTM.
 - One activation function (ReLU)

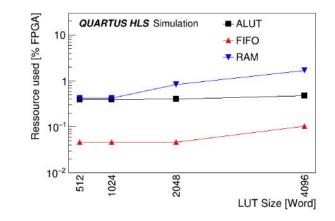


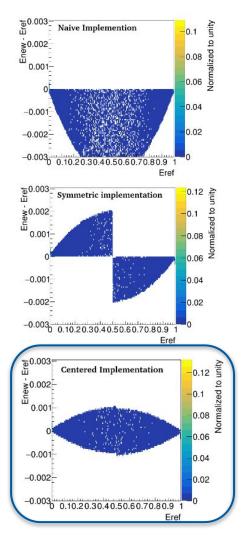


Symmetric optimization LUT applied

- To improve resource usage, it is possible to apply half the table size usage using the symmetric softsign, sigmoid and tanh properties (e.g. sig(-x)=-sig(x))
- Already implemented in hls and already available on master
- Optimizing the LUT's gives an higher precision for the same resources usage value
- Sigmoid and hyperbolic tangent LUT output strictly between -1 and 1:
 - no need for integer bits

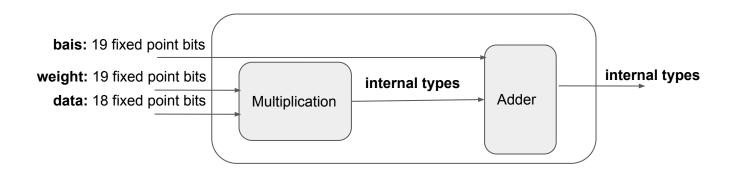






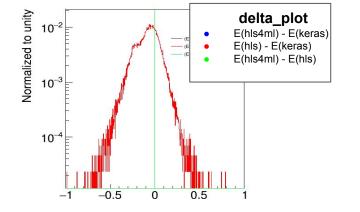
INTERNAL FIXED POINT EFFECTS

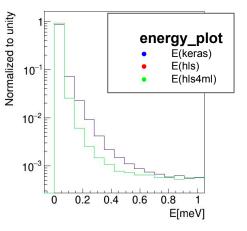
- The internal fixed point representation affects directly the performance of the output and the resource used (*Etienne's thesis*)
 - Especially for DSP, which is the most used when applying multiplications
- For the FPGA type statix 10, the precision DSP blocks for 2 variable are:
 - Fixed-point complex 18 x 19 multiplication
- After the multiplication, the 37 bits generated can be casted now in a different internal fixed point representation and not more in 19 bits.
 - Other math calculations, like adder, can obtain more precision using a different internal representation fixed point after the first multiplication



Actual LSTM comparison between $HLS\ \mbox{and}\ HLS4ML$

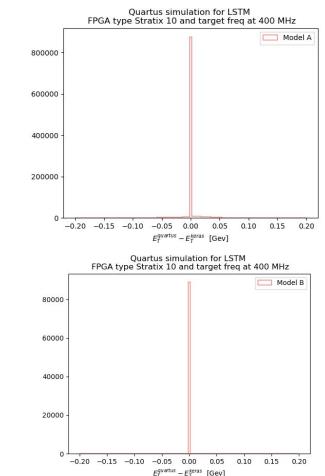
- HLS output already found to have a good energy resolutions
- No difference between hls reference and hls4ml





Stratix10 1SG280HU2F50E2VG	LUTs	FFs	RAMs	DSPs	Latency (min, max,avg)	 (min, max, avg)	Target frequency
HLS (ETIENNE PHD)	8%	6%	4%	13%	325,353,339	1, 1, 1	400 MHz
HLS4ML with no optimizations	9%	7%	14%	22%	322, 346, 322	1, 1, 1	400 MHz
HLS4ML with LUT OPTIMIZATION	9%	6%	8%	22%	322, 346, 322	1, 1, 1	400 MHz
HLS4ML with presented optimizations	8%	6%	4%	13%	320,326,325	1, 1, 1	400 MHz

EXAMPLES OF OTHERS RECURRENT NEURAL NETWORKS



Layer (type)	Output	Shape	Param #
lstm_6 (LSTM)	(None,	4)	96
dense_7 (Dense)	(None,	8)	40
dense_8 (Dense)	(None,	1)	9

Total params: 145 Trainable params: 145 Non-trainable params: 0

Model A

• The activation and recurrent activation function of LSTM was Tanh and Sigmoid. For the both Dense was Relu

	Layer (type)	Output	Shape	Param #
	lstm_4 (LSTM)	(None,	<mark>4</mark>)	96
delB	dense_4 (Dense)	(None,	1)	5
Moc	Total params: 101 Trainable params: 101 Non-trainable params: 0			

• The activation and recurrent activation function of LSTM was Sigmoid and Tanh. Dense was Relu

VHDL IMPLEMENTATION

- Manually setting the placement constraints allows us to reduce the timing issue
 - Impossible to replace on HLS
- Duplicate the recurrent kernel cell reduce the mean path between the weights and the DSPs
- Synchronization inside of the cell at the critical path on the RTL code

Type	Number of network	Multiplexing	Number of channel	ALM	DSP	Memory	Fmax
Specifications	X	X	384	30%	70%	30%	Mult * 40 MHz
without placement	28	14	392	18.2%	66.1%	15.8%	501 MHz
with placement	28	14	392	18.2%	66.1%	15.8%	531 MHz

- Incremental compilation
 - Fixing some crucial FPGA areas and using incremental compilation, it's possible to reach higher frequencies

Type	Number of network	Multiplexing	Number of channel	ALM	DSP	Memory	Fmax
Specifications	X	Х	384	30%	70%	30%	Mult * 40 MHz
first compilation	28	14	392	18.2%	66.1%	15.8%	531 MHz
incremental compilation	28	14	392	18.2%	66.1%	15.8%	561 MHz

G_{ENERAL} status and perspectives

- Software package for translation of trained neural networks into synthesizable FPGA firmware
- RNN are now available on github master for Quartus
- HLS4ML can be used for quick start and optimization of NN params. However, final VHDL optimization is needed if hard constraint have to be met on latency and resource usage.