

Exploring the Extreme Universe with MeV to TeV Gamma-ray Observatories

Reshmi Mukherjee¹ ¹Barnard College, Columbia University, NY

DESY Colloquium 14 Dec 2022

Thanks to the VERITAS Collaboration

VERITAS hybrid Summer Collaboration Meeting 2022 at DESY (Zeuthen)

Outline

- Motivation and broad science goals
 - Cosmic ray and astrophysical accelerators
- Techniques in high energy gamma-ray astronomy
 - satellite, ground-based
- Science highlights
 - Open questions in Particle Astrophysics
 - What are the most energetic events in the universe?
 - (Focus on relativistic jets and blazars)
- Future new telescopes

Why Gamma-Ray Astronomy?

- Provides crucial window in the cosmic E-M spectrum
- Exploration of non-thermal phenomena in the Universe of the most energetic and violent forms
- The "last window" in the cosmic EM spectrum covers 8+ decades

- LE or MeV : 0.1 100 MeV
- HE or GeV : 0.1 10 GeV
- VHE or TeV : 0.1 100 TeV

domain of space-based astronomy domain of ground-based astronomy

Potential & Uniqueness

Unique for specific topics

- e.g. for the solution of the origin of Galactic and Extragalactic Cosmic Rays
- May provide <u>key insight</u> into a number of astrophysics questions
 - physics and astrophysics of relativistic outflows (jets and winds)
 - HE processes at extreme conditions (e.g. close to Black Holes)
 - Physics and astrophysics of Supermassive Black Holes
- Using γ rays to probe intergalactic space
 - Diffuse radiation fields.
- Contribution to <u>fundamental physics topics</u>
 - violation of Lorentz invariance
 - search for Dark Matter

Energies & rates of CR particles

- >100 year old mystery !
- Enormous energy range
- Mostly charged particles
- ~85% protons, ~12% He nuclei,
- ~1% heavier nuclei, ~1% e- and e+.
- Energy density ~ I eV/cm³

PeVatrons and Zevatrons are extreme accelerators

- below 10¹⁵ eV G
- beyond 10¹⁸ eV ExG
- between 10¹⁵-10¹⁸ eV ?

Cosmic Ray Origins

Fermi Acceleration Mechanism

Stochastic energy gain in collisions with plasma clouds

2nd order :

randomly distributed magnetic mirrors

[Slow and inefficient]

1st order :

acceleration in strong shock waves (supernova ejecta, RG hot spots...)

see: http://hires.physics.utah.edu/

How do you get 10²⁰ eV?

Diffusive shock acceleration: stochastic

energy gain in collisions with plasma clouds

Shock waves + strong magnetic fields increase the energy of cosmic rays over time:

- Particle's perspective: crossing the shock => head-on collision with magnetic domains
- Energy gain:
 AE/E ~ | %

Extragalactic γ-ray Sources: Blazars

Buckley, Science 1998

Physics of Compact Objects: AGN scales

- Active galactic nuclei occupy a tiny fraction of a galaxy:
 - R_G ~ 10⁴ pc
 - R_{tor} ~ I pc
 - R_{BH} ~ 10⁻⁵ pc
- Blazars: largest TeV & GeV extragalactic source class
- Ultra short time variability (~min scales)
- Extremely hard (harder than E^{-1.5}) energy spectra
- Jet power exceeds Eddington luminosity. High γ-ray luminosity ~ 10⁴⁸erg/s (isotropic)
- GeV-TeV particles are needed to make VHE γ-rays
- Doppler boosting allows γ-rays to be detectable from >100 Mpc sources

Extragalactic Jets: Regime of relativistic plasmas

Open Questions

- Origin of fast flares?
- Physics of particle acceleration & relativistic reconnection?
- Blazars as neutrino sources?

The instruments at VHE energies

On the Ground: Physics of Extensive Air Showers

The Atmospheric Cherenkov Technique

The Gamma-ray Instruments (2022)

VERITAS Cherenkov Telescope

Sources of VHE radiation

- Pevatrons & Tevatrons in the outer Galaxy
- Relativistic Jets

VHE Gamma-Ray Sky (2022)

- More than 250 sources
- 10 different source classes
- ~90 extragalactic sources (86 AGN + 3 starbursts)
 - Expansion of radio galaxy counts
 - Detection of starburst galaxies
 - GRBs detected as TeV sources (after a > 15 yr search)
- Detection of powerful and ultrashort flares of AGN (Fermi, IACTs)

The Extragalactic TeV γ-ray Sky

- Blazar population studies: SED-based distributions of low-, intermediate-, high-Synchrotron-Peaked sources
- Of the TeV blazars, 90% of blazars with known redshift have z < 0.5
- Possible to do GeV-TeV blazar studies. Probe EBL, IGMF, ALP studies
- Build blazar luminosity functions

The Extragalactic GeV γ-ray Sky

EGRET - Fermi-LAT : not the same sky

Nearby Extragalactic Sources: Radio Galaxies

Radio Galaxies (mis-aligned jets)

Broadband MWL for M87 with EHT

Name	Туре	Distance	- 11.0
Cen A	FR I	3.7 Mpc	- 11.5
M 87	FR I	16 Mpc	()
NGC 1275	FR I	70 Mpc	s – 12.5
IC 310	FR I/BL Lac	80 Mpc	2 6 0 13.0
3C 264	FR I	95 Mpc	- 13.5
PKS 0625-35	FR I/BL Lac	220 Mpc	- 14.0

Rieger & Levinson 2018 arXiv:1810.05409

"VHE γ -ray emission cannot be produced in same region as mm-band. Need of structured jet model including time-dependence" (A. Hahn γ 2022)

Radio Galaxy NGC 1275: Long term monitoring

AGN Physics - a Multi-scale Problem

A modelling challenge

See F. Rieger γ2022

BH magnetosphere and jet are multi-scale systems

Extreme High Frequency peaked BL Lacs

Unprecedented Light Curves in TeV Blazars

- LAT daily and sub-daily light curves for 3 FSRQs
- Models for fast flares?
 - Magnetic reconnection?
 - Slower variability explained by shocks
 - What is the origin of short-duration flares?

Flux distributions of 3 FSRQs, scaled as probability densities. SDE model of Tavecchio et al.

See A. Brill Poster $\gamma 2022$

Magnetic Reconnection? Very Fast γ-ray Flares

Origin of short-duration flares is unknown
Short flares could be due to plasmoids that produce flares with characteristic duration
Sims being carried out for Fermi-LAT flares

Characterizing Very Fast γ-ray Outbursts

Meyer, Scargle, Blandford 2020

What causes stochastic multiwavelength variability in blazars?

Flux distributions of simulated light curves for different types of blazars

See A. Brill poster γ2022

Relativistic Reconnection Models

Relativistic reconnection can:

- Dissipate magnetic energy efficiently (at rate ~ 0.1 c).
- Produce non-thermal particles with hard power-law slopes.
- Serve as injection process for subsequent (non-reconnection) acceleration:
 e.g., Fermi acceleration at shocks, stochastic acceleration in turbulence, shear acceleration at jet boundaries.
- Imprint strong pitch-angle anisotropy, and so explain orphan flares.
- Produce trans- and ultra-relativistic bulk motions, and so explain (1) fast blazar flares, and (2) hard X-ray emission from X-ray binaries.

Reconnection produces broken spectra

See L. Sironi γ2022

Gamma-Ray Bursts as VHE Sources

Search for TeV emission from GRBs for > 15 years – Finally! Long GRBs detected in VHE (~0.1 TeV) during the afterglow phase

GRB 190114C (MAGIC Coll., Nature, 2020)

- long GRB, z = 0.4245 (0.2 1 TeV)
- for 40' after T0 \pm 60 s
- $E_{max} \sim 1 \text{ TeV}, 50 \sigma \text{ detection}$

GRB 180720B (H.E.S.S. Coll., Nature, 2020)

- long GRB, z = 0.654
- $E_{max} \sim 440 \text{ GeV}$
- 10h after T0

T. Piran

GRB 190829A (H.E.S.S. Coll., Science)

- long GRB, z = 0.078 (0.18-3.3 TeV)
- for **3** nights after T0 + 4.3h
- $E_{max} \sim 3.3 \text{ TeV}, 20 \sigma \text{ detection}$

GRB 201216C(MAGIC Coll. ICRC021, S.Fukami)

- long GRB, z=1.1
- for 20' after T0+

Multimessenger: UHE Cosmic Rays and Neutrinos

IC170922 and TXS 0506+056: First evidence (3σ) for a neutrino source **Are blazars the sources of the highest energy cosmic rays?**

Supernova Remnants

- Detected at sub-TeV, TeV, sub-PeV
- Several young shell-type SNRs detected, but the main question "whether SNRs are main contributors to GCRs?" is not yet resolved.

IC 443 VERITAS Collabo

Reshmi Mukherjee

RX J1713.7-3946

Cosmic rays?

Fermi-LAT SED cutoff around 200 MeV, "pion bump," is direct indication of hadronic interactions.

Dark Matter, Astroparticle Physics, Cosmology

- Dark matter searches (Classical & ultra faint dwarf spheroidals; PRD 2017)
- Lorentz Invariance Violation (Energy dependent speed of light differences; targets GRBs, pulse widths of γ-ray pulsars, AGN variability)
- Primordial Black Holes (could evaporate and produce bursts of VHE γs)
- Extragalactic Background Light ($\gamma_{VHE} + \gamma_{EBL} \rightarrow e^+ + e^-$)
- Intergalactic Magnetic Fields (look for pair cascades/halos; ApJ 2017)
- Direct Cherenkov emission (produced by the primary particle, CR heavy nuclei)
- Electron-positron measurements (Galactic CR studies)
- Multi-Messenger Astrophysics
 - Gravitational Wave EM counterpart searches
 - IceCube neutrino follow ups (BL Lac object TXS 0506+056; ApJ Lett 2018)

TeV Astronomy in the Future

The Cherenkov Telescope Array

https://www.cta-observatory.org/

The Schwarzschild-Couder Telescope

V. Vassiliev et al. Astroparticle Physics 28 (2007) 10

- Novel dual-mirror optical system
- >10,000 channel state-ofthe-art SiPM camera

The Schwarzschild-Couder Telescope(SCT)

- Candidate for a Medium-Sized Telescope for CTA
 - With an advanced telescope optical system
- Aplanatic dual-mirror optical system
 - Increased FoV. Simultaneous correction of spherical and comatic aberrations
 - Demagnification of shower images
 - Minimization of astigmatism thanks to curved focal plane
 - Small focal plane plate scale enables use of state-of-the-art novel SiPM light sensors reducing camera dimension and costs
 - Significantly increase in imaging resolution
- → Main challenges: Mechanical stability and mirror alignment
- The prototypeSCT (pSCT)
 - Located at the Fred Lawrence Whipple Observatoryin southern Arizona (USA)
 - (At the site of the VERITAS telescopes)

The SCT: big eyes with a sharper view

- Superior optical angular resolution over a wide (~8°) field of view
- By focusing the light on a smaller surface, enables the use of state-of-the-art sensors
- Better sensitivity and reduced observation time
- Better γ-ray PSF across the FoV for morphology, survey, and transients

The SCT Optical System

Primary mirror: radius 4.83 m

- segmented into 48 panels
- inner-ring panel (PI) area 1.33 m²
- outer-ring panel (P2) area of 1.16 m²

Secondary mirror: radius 2.71 m

- Segmented into 24 panels
- inner-ring (S1) and outer ring (S2) area 0.94 m²

I6 PI and 8 SI
32 P2 and 16 S2

https://cta-psct.physics.ucla.edu/

Verification of the Optical System of the 9.7-m Prototype Schwarzschild-Couder Telescope <u>https://arxiv.org/pdf/2010.13027.pdf</u>

Optical on-axis PSF commissioning

Image pixel (Inner square) Trigger pixel (Outer square)

$$PSF = 2 \times \max(\sigma_y, \sigma_x)$$

** corresponding to a 86.5% containment radius (for $\sigma_x = \sigma_y$)

- Commissioning on-axis optical PSF 2σ (cyan): 2.8' (4.5 mm)
- The design "acceptable" on-axis PSF (yellow): 3.6' and the "desirable" PSF (red): 2.6'
- Image of an on-axis star → optical PSF exceeds pre-production acceptable goal

The pSCT focal plane

https://arxiv.org/pdf/1910.00133.pdf

- Currently 24 modules are installed
- Central sector with the central module left uninstalled for optical alignment work

The detectors: Silicon Photomultipliers

SiPMs: array of reverse-biased Single Photon avalanche Diodes (SPADs) connected in parallel

From IxI mm² to I0xI0 mm²

from 5 μ m to 40 μ m (typical)

Detection of the Crab Nebula with the Prototype SCT

https://doi.org/10.1016/j.astropartphys.2021.102562

60

40 20

den henden der den den henden der

90 α (°)

- Advantageous to have pSCT and VERITAS at the same (astronomical quality) site
- pSCT + VERITAS joint operations helpful

The pSCT Camera Upgrade – NSF Funded

The CTA SCT Project

- Jan 23, 2019: First light of the prototype SCT (pSCT)
- May 2020: Detection of the Crab Nebula reported (Astropart. Phys., 128, 102562, 2021)
- Oct 2020: CTA Consortium endorses the development and construction of SCTs to enhance and complement DC-MSTs
- Ongoing: Instrumentation of the focal plane to 11k+ channels with upgraded SiPMs
- 2023: Expected completion of pSCT camera upgrade to full 8° field of view

Astro 2020 Decadal Survey endorses CTA-US contributions of SCT telescopes as an essential element of US multimessenger strategy

The Future: IO MeV – Compton Regime

The Future of Gamma-Ray Experiments in the MeV - EeV Range, Snowmass Whitepaper arXiv:2203.07360

- Good coverage in the Swift-BAT & Fermi-LAT, but significant MeV "gap" -- No dedicated mission since Comptel.
- Future? COSI, GRAMS, Amego-X, HERD, several other proposed missions

The GRAMS Detector Design

LArTPC surrounded by plastic scintillators

Large-scale, low-energy threshold LArTPC has been well-studied/widely-used in underground dark matter/neutrino experiments

GRAMS: Antimatter Detector

Measure atomic X-rays and annihilation products

- A time of flight (TOF) system tags candidate events and records velocity
- The antiparticle slows down & stops, forming an excited exotic atom
- De-excitation X-rays provide signature
- Annihilation products provide additional background suppression

MeV Gamma-ray Observations

LArTPC surrounded by plastic scintillators

Balloon flight: an order of magnitude improved
 Satellite mission: comparable to future missions

Astro2020 Decadal Survey:

Continuity of Multi-messenger Capabilities

Thank you!